2.5.2 Water supply and convenienceEverybody wants water as close as possible to his home, simply because it is more convenient.
Thus, convenience is an important consideration as health benefits. In some societies and situations, convenience is also related to the security of women, which is water supply closer to home can minimize the risk of abduction, rape and assault. Besides, when girls are forced to carry heavy loads of water over long distances, there is a danger of lasting spinal column and pelvis injury and deformations. Thus, closer water sources minimize these problems (UNICEF,1999).
We Will Write a Custom Essay Specifically
For You For Only $13.90/page!
order now
2.5.3 Water supply and energy savedStudies have shown that women who walk long distances to collect water can burn as much as 600 calories of energy or more per day, which may be one third of their nutritional intake. Closer sources of water can thus improve the nutritional status of women and children and this in turn improves their health and wellbeing. The time saved is used for other productive economic and social activities.
(UNICEF, 1999). 2.6 Impacts of water supply inaccessibilityAlthough water is the primary needs of human being, unimproved water services have many negative impacts on people livelihood. Among which; health, socio-economic, environmental degradation and poor educational performance are the major.2.6.
1. Health impactsThe improvement of water in developing countries is largely driven by the need to reduce the incidence and prevalence of infectious disease caused by pathogenic micro organisms. The majority of pathogens that affect humans are derived from faeces and transmitted by the faecal-oral route. Pathogen transmission may occur through a variety of routes including food, water, poor personal hygiene and flies (Ahmed and Nalubega, 2001).According to USAID/E Statement of Work (SOW) for the Millennium Water Alliance (MWA) Water, Sanitation & Hygiene (WASH) program evaluation, “approximately 3.1% of deaths worldwide are attributed to unsafe water, sanitation and hygiene practices. Africa carries the heaviest burden, with 4 to 8% of all disease in Africa being related to poor water.
In Ethiopia, water related diarrhea accounts for approximately 20% of all deaths in children under the age of five, taking the lives of close to 100,000 children annually USAID/E (2008).2.6.2. Socio-economic impactsPoor access to water supply limits opportunities to escape poverty and exacerbates the problems of vulnerable and marginalized groups especially those affected by HIV/AIDS and other diseases (Alaci and Alehegn, 2009).According to Ethiopian Ministry of Health (2005), the well known negative synergy of diarrhoeal disease, malnutrition and opportunistic infections are known to have short-term health impacts and long term debilitating effects. In the long term, child development is impaired resulting in growth retardation and diminished learning abilities.
It is estimated that 4 in 10 children will not realise their educational potential which ultimately inhibits socio-economic development. In addition there is a potential productive time lost to illness caring for the sick and attending clinics. There are also the financial costs of treatment for medicines and clinic attendance.2.6.3. Environmental degradation impactsBesides being pollutants of surface waters (necessitating higher treatment costs), faeces and urine are a potential (under-exploited) source of compost and fertilizer which could help address decreasing soil fertility and reduce the high cost (both financial and environmental) of chemical fertilizers.
They can also be used to produce biogas (a renewable energy source) which as well as safely containing excreta could contribute to reducing deforestation which is a key environmental issue. Biogas digesters can also be ‘fed’ with organic solid waste in urban areas as an efficient treatment and use of ‘waste’ (MoH, 2005).2.7 Urban water supply and distribution in Ethiopia The water supply and sanitation sector in Ethiopia is one of the developing countries and is mostly characterized by service deficiency of physical infrastructure as well as by inadequate management capacity to handle policy and regulatory issue and to plan, operate, and maintain the service. Ethiopia has one of the highest urbanization growth rates in the developing countries. According to data obtained from the Central Statistical Agency, the country’s urban population was growing at 4.8 per cent per annum between the 1995 and 2000. The urban population in Ethiopia in 1984, the first census period, was 4.
3 million forming 11 per cent of the total population. In 1994, the second census period, the urban population was 7.4 million. Total urban population had increased by 12per cent from that of 1984. In terms of urban centers, in 1984, Ethiopia had 312 urban centers with population of over 2000.
In 1994, the second census period, the urban centers in the country grew to 534 registering an increase of 71 per cent over that of 1984 though the definitions of the two censuses are not the same (Tegegne, 2000). The rapid growth of urban population has placed tremendous pressure on the management capacity of municipalities for service delivery and local economic development. This phenomenal growth has also burdened many municipalities with the problems of inadequate housing, poverty and unemployment, inadequate water and electricity supply, and poor sanitation systems. Available data also indicate that in the next 25 years (1994-2020), nearly 30 % of Ethiopia population will live in cities.
Regarding this, rapid urban population growth will inevitably call for huge investments in housing, urban infrastructure, water and electricity supply, sanitation systems and environmental protection programs and programs to alleviate poverty and unemployment in the cities. This implies that the challenge will require well trained municipal management and resource capacity, responsive urban governance and well trained and motivated personnel and sustaining services such as water, electricity supply, local revenue collection and administration to meet the ever growing demand for better and more quality services and infrastructures of Urban Population Projection for Ethiopia1995-2020 (Tegegne, 2000). In addition to this, the World Bank Group (2005) mentioned that the demand for differentiated technologies-piped water supply the core, alternative technologies in the fringe areas- and the often rapid unpredictable water demand and spatial growth require planning, design, and management skills that exceed community based management approaches. But unlike larger towns or cities, these smaller towns often lack the financial and human resources to independently plan, finance, manage and operate their WSS systems. This implies that a key challenge for town WSS is to allocate limited government resources amongst a large number of dispersed towns. There are also variations across urban areas.
The aforementioned information indicates that as a result of low level of development a significant proportion of the total urban population of Ethiopia in particular and total population of Ethiopia in general have no access to safe and adequate potable water supply. They still restrict themselves to use what nature has provided them with in the form of springs, rivers, lakes, ponds, traditional hand dug wells and rain water which are often unsafe, cause health hazards and are at considerable distance from households. Among the main reasons given for the slow pace of progress in water supply services in Ethiopia, the following are net worthy: lack of comprehensive legislation; inadequate investment resources; lack of a national water tariff policy and the absence of beneficiary participation and community management (Dessalegn, 1999). In relation to this, MoWR (2002) stated that issues of poor sector capacity and low level of expenditures for WSS are interlinked and lead to a vicious circle – as low level of investments create low demand for technical and manpower inputs in WSS sector, the capacity remains underdeveloped.
The resulting low sector capacity, means low allocations and expenditures are curtailed. The sustainability of water supply facilities mainly depends on a timely and regular maintenance and operation of the system. However, in most developing countries, including Ethiopia, it has been found out that operation and maintenance (O;M) of water supply facilities is in a poor state of condition and the sustainability of the scheme is at stake. Regarding this, MoWR (2002) identified the following underlying problems: • Inappropriate tariff setting without emphasis on full cost recovery; • Lack of clear guidelines for urban tariff setting including issues related to fairness, and financial sustainability; • Inappropriate or lack of institutional incentives for urban WSPs to achieve financial viability and improved operational performance; • Poor technical and financial capacity among the urban service providers that leads to high levels of Unaccounted For Water (UFW); and • Poor or non- existent consumer services and grievance handling system that leads to a lack of willing to pay user charges.