LEVEL 3 HEALTH AND SOCIAL CARE UNIT 5: ANATOMY AND PHYSIOLOGY IN HEALTH AND SOCIAL CARE TASK 5: EVALUATE THE IMPORTANCE ON HOMEOSTASIS. DISCUSS PROBABLE HOMEOSTASIS RESPONSES TO CHANGES IN THE INTERNAL ENVIRONMENT DURING EXCERICSE ASWELL AS EXPLAINING THE CONCEPT OF HOMEOSTASIS.Molly DilkesSTUDENT ID: 40971911/1/2018Homeostasis: This is a self-regulating process which maintains a constant internal environment despite external changes; this is to allow optimal survival. When homeostasis is successful, life continues; when unsuccessful, disaster or death comes. The stability which is achieved is actually a dynamic equilibrium, this is the continuous changes occurrence however relatively uniform conditions prevail.
Most systems in the dynamic equilibrium tend to reach a stable state (a balance resisting the changes from the outside forces), however when these systems are disturbed a built-in regulatory device responds immediately to establish a new stable balance (known as feedback control.) Some examples of homeostasis are mediated by electrical circuits, your nervous system and hormonal systems. An example of homeostasis in a biological system is the control of body temperature in humans. Your body temperature fluctuates around 37 degrees Celsius, however other factors like hormones, metabolic rate and diseases can affect this value as they can lead to extremely high or low temperatures. This is controlled by a region of the brain called the hypothalamus. This response is carried through the bloodstream to the brain, resulting in compensatory adjustments in the breathing rate, levels of blood sugar and metabolic rate.
Heat loss in humans is aided by a decrease of activity (known as perspiration) and by heat-exchanging mechanisms that’ll approve larger amounts of blood to circulate nearer the skins surface. Heat loss is reduced by insulation, quickly decreasing the circulation to the skin, and cultural adjustments like clothing, shelter and external heat sources. The dramatic range between low and high body temperature levels will constitute towards the homeostatic plateau, as negative feedback will return the systems to the normal range. Homeostasis is a combination of biodiversity and large numbers of interactions that occur between species. This is a concept that is thought to help explain the ecosystems stability, however the concept has differed to incorporate the ecosystems abiotic parts.My dataI have collected date of my own heart rate, breathing rate, temperature and blood pressure before and after 1 minute of running on a treadmill.Measurement At rest After exercise After 1 minute interval After 2 minutes After 3 minutesPulse 86 109 94 91 92Breathing 14 26 20 16 14Blood pressure 90/51 148/80 133/72 100/53 104/70Temperature 37 degrees 38 degrees 38 degrees 37 degrees 37degreesYour pulse is the rate at which your heart beats; the average healthy pulse for individuals over 10 years is between 60 and 100 beats per minute.
This table shows that my pulse rate when relaxing is at 86 which is between the average and at a healthy rate. When exercising the table shows how my heart rate increases by 23 beats per minute, this is quite dramatic however it is normal for your heart rate to increase when exercising. Once I finished running on the treadmill you can see that my pulse was slowly starting to decrease every time it was taken, this is due to my body cooling down and going back to its relaxed state. Your breathing is to do with how many breaths you take per minute, though your breathing can be easily manipulated if you have to record your breathing rate for an experiment like the one I had to record on myself. My breathing when resting was 14 which is healthy for an individual of my age (17 years.) When exercising you can see that my breathing increased, this was to allow more oxygenated blood and nutrients get to my muscles to help them work harder and more efficiently for the kind of exercise I was doing, whilst in this state my digestive system slows down so that it doesn’t use up the energy that my muscles need. After a few minutes of exercising my breathing rate decreased back to its “relaxed” state as my body did not need the extra supply of energy to my muscles.
Blood pressure is the amount of pressure on your arteries every time your heart beats. The first number is the systolic pressure; this is the amount of pressure on the arteries from the blood. The second number is the diastolic pressure; this is the pressure on the arteries when the heart is not beating. When my body was relaxed my blood pressure was quite low. Throughout exercising my blood pressure increased dramatically and after exercising my blood pressure started to decrease steadily.
My blood pressure was quite low when relaxing and after exercise, however this could be because I was on prescribed medications called PPI’s (proton pump inhibitors) and scopolamine butylbromide. Though this may not have affected my results, I have to consider the probabilities that it may. The blood pressure scale for individuals:90 over 60 (90/60) or less: You may have low blood pressureMore than 90 over 60 (90/60) and less than 120 over 80 (120/80): Your blood pressure reading is ideal and healthy. Following a healthy lifestyle can keep it at this level.
More than 120 over 80 and less than 140 over 90 (120/80-140/90): You have a normal blood pressure reading but it is a little higher than it should be, and you should try to make changes that’ll help lower it. 140 over 90 (140/90) or higher (over a number of weeks): You may have high blood pressure (hypertension). If your top number is 140 or more – then you may have high blood pressure, regardless of your bottom number.
If your bottom number is 90 or more – then you may have high blood pressure, regardless your top number.If your top number is 90 or less – then you may have low blood pressure, regardless of your bottom number.If your bottom number is 60 or less – then you may have low blood pressure, regardless of your top number.My temperature when I was relaxed and after exercise stayed at 37 degrees. Though when exercising it rose to 38 degrees.
This is due to the energy that is powering my muscles are lost as heat, causing my body temperature to rise during exercise.Factors that may have affected my results could be down to being on medications that affect my digestive system as well as my cardiovascular system. The side effects are being that it can make you have a faster than normal heart rate (tachycardia), and potentially causing you to have a lower blood pressure (though this hasn’t been proven yet/ there are no resources that have enough evidence to prove so.) Another factors affecting my results could be to me recently starting smoking, this could cause my body to pump more blood around by body which will increase my heart rate, as well as making me taking more breathes.The homeostasis response in my body was to ensure that my body converted food into energy during exercising, this so producing heat as waste product. The extra heat my body produced elevated my body temperature above 37 degrees. To maintain homeostasis my blood vessels had to dilate to allow more blood flow to the surface of my body where heat is then dispersed. During exercise my breathing rate increased so that more oxygen could be supplied to my skeletal muscles.
This caused me to breathe more heavily even after I had completed my exercise. After I had finished running on the treadmill my body still needed larger amounts of oxygen to help break down the lactic acid build up in my muscles. During exercise my body produced more heat than usual as well as activating the heat exchanging process, though this easily went back to my normal temperature at 37 degrees. During the exercise my blood pressure increases in order to allow an efficient supply of nutrients and energy to my active muscles.
Afterwards my body cooled down, though because I went straight to as seated recovery my blood pressure could have dropped abruptly which can have a negative effect on my body, considering I have low blood pressure.