## Past For the flow past a cylinder,

Past a Rigid Boundary Abstract In this paper, stream function and velocity potential for the flow field under the condition of irrotationality in two-dimensional motion are considered. Then complex potential and complex velocity are described. Some elementary solutions corresponding to the uniform flow, source, sink, doublet and vortex in two-dimensional motion are presented. Blasius theorem which is useful to find the hydrodynamic force and the hydrodynamic moment acting on the body is investigated. The flow past a cylinder without circulation and flow past a cylinder with circulation are expressed. For the flow past a cylinder, hydrodynamic force and the hydrodynamic moment acting on the cylinder are derived by using the Blasius theorem. 1. Fundamental Concepts to Two-Dimensional Flow 1.

1 Stream function The continuity equation, in Cartesian coordinates, for the flow field under consideration is EMBED Equation.DSMT4 0, (1) where u, v are components of the fluid velocity. Now introduce a function ((x, y) that is defined as follows u EMBED Equation.DSMT4 , v EMBED Equation.DSMT4 .

We Will Write a Custom Essay Specifically
For You For Only \$13.90/page!

order now

(2) With this definition, the continuity equation is satisfied identically for all functions (. The function ( is called the stream function. The condition of irrotationality is EMBED Equation.DSMT4 . Substituting for u and v from (1) and (2) show that ( must satisfy the following equation EMBED Equation.

DSMT4 . (3) That is, the stream function (, like the velocity potential (, must satisfy the Laplaces equation. The flow lines that correspond to ( constant are the stream lines of the flow field.

To show this, it is noted that ( is a function of both x and y in general so that the total variation in ( associated with a change in x and a change in y may be calculated from the expression d( EMBED Equation.DSMT4 ( v dx u dy. Then the equation of the line ( constant will be ( vdx u dy 0 or EMBED Equation.DSMT4 . Hence the lines corresponding to ( constant are the streamlines, and each value of the constant defines a different stream line. It is this property of the function ( that justifies the name stream function. Finally, it should be noted that the streamlines ( constant and the lines ( constant, which are called equipotential lines, are orthogonal to each other. This may be shown by noting that if ( depends upon both x and y, the total change in ( associated with changes in both x and y will be d( EMBED Equation.

DSMT4 udx vdy. Then the lines corresponding to ( constant will be defined by udx vdy 0, or EMBED Equation.DSMT4 . That is, EMBED Equation.DSMT4 .

This means that, the slope of the lines ( constant is the negative reciprocal of the slope of the lines ( constant, so that these lines must be orthogonal. 1.2 Complex potential and complex velocity The velocity components u and v may be expressed in terms of either the velocity potential or the stream function. These expressions are u EMBED Equation.DSMT4 , v EMBED Equation.DSMT4 . That is, the function ( and ( are related by the expressions EMBED Equation.

DSMT4 , EMBED Equation.DSMT4 . But these will be recognized as the Cauchy-Riemann equations for the functions ((x, y) and ((x, y).Then consider the complex potential F(z), which is defined as follows F(z) ((x, y) i((x, y), (4) where z x iy, ( and ( are called conjugate functions. That is, for every analytic function F(z) the real part is automatically a valid velocity potential and the imaginary part is a valid stream function.

Another quantity of prime interest, apart from the complex potential F(z), is the derivative of F(z) with respect to z. Since F(z) is supposed to be analytic, EMBED Equation.DSMT4 will be a point function whose value is independent of the direction in which it is calculated. Then, denoting this derivative by W, its value will be given by W(z) EMBED Equation.DSMT4 EMBED Equation.

DSMT4 , W(z) u ( iv, (5) that is, W(z) EMBED Equation.DSMT4 , where use has been made of (4), EMBED Equation.DSMT4 and (2). W(z) is called the complex velocity and its complex conjugate EMBED Equation.DSMT4 Then EMBED Equation.DSMT4 (u ( iv)(u iv) u2 v2 q2.

The significance of this result is that the quantity EMBED Equation.DSMT4 u2 v2 appears in the Bernoulli equation. The complex velocity may be readily obtained in cylindrical coordinates by converting the Cartesian components of the velocity vector (u,v) to cylindrical components (uR, u(). Figure 1 shows a velocity vector OP decomposed into its Cartesian components and also its cylindrical components. Thus, u uR cos ( ( u( cos EMBED Equation.DSMT4 uR cos ( ( u( sin (, v uR sin ( u( sin EMBED Equation.DSMT4 uR sin ( u( cos (.

Substituting these expressions into (5) gives the expression for the complex velocity W in terms of uR and u( . Figure 1. W(z) (uR cos ( ( u(sin () ( i(uR sin( u( cos() uR(cos ( ( i sin () ( i u( (cos( ( i sin ().

That is, W (uR ( iu()e(i(. (6) 1.3 Uniform flows The simplest analytic function of z is proportional to z itself, and the corresponding flow fields are uniform flows. First, consider F(z) to be proportional to z where the constant of proportionality is real.

That is F(z) cz, where c is real. Then from (5), W(z) u ( iv c. Then, by equating real and imaginary parts of this equation, the velocity components corresponding to this complex potential are u c and v 0. But this is the velocity field for a uniform rectilinear flow as shown in Figure 2(a). Thus the complex potential for such a flow whose velocity magnitude is U in the positive x direction will be F(z) Uz. (7) Next consider the complex potential to be proportional to z with an imaginary constant of proportionality.

Then F(z) ( icz, where c is real. The minus sign has been included to make the velocity component positive when c is positive. For this complex potential W(z) u ( iv ( ic so that the velocity components are u 0, v c. (a) (b) (c) Figure 2. This is a uniform vertical flow as shown in Figure 2(b). Then the complex potential for such a flow whose velocity magnitude is V in the positive y direction will be F(z) ( iVz.

(8) Finally, consider a complex constant of proportionality so that F(z) ce(i(z, where c and ( are real. For this complex potential W(z) u ( iv c(cos( ( i sin(). Hence, the velocity components of the flow field are u c cos( and v c sin(.

This corresponds to a uniform flow inclined at an angle ( to the x-axis as shown in Figure 2(c). Hence the complex potential for such a flow whose velocity magnitude is V will be F(z) Vze(i(. (9) This last result, of course, contains the two previous results as special cases corresponding to ( 0 and ( EMBED Equation.DSMT4 . 1.4 Source, sink and vortex flows Complex potentials that correspond to the flow fields generated by sources, sinks and vortices are obtained by considering F(z) to be proportional to log z. Consider, first, the constant of proportionality to be real. Then F(z) c log z, F(z) c log(Rei(), ( i( c log R ic(.

Hence, ( c log R and ( c(. This gives a flow field as shown in Figure 3(a) in which the stream lines are shown solid and the direction of the flow is shown for c 0. The direction of the flow is readily confirmed by evaluating the velocity components so that W(z) EMBED Equation.DSMT4 . (a) (b) Figure 3. Streamlines (shown solid) and equipotential lines (shown dashed).

(a) source flow (b) vortex flow in the positive sense. Comparison with (6), shows that the velocity components are uR EMBED Equation.DSMT4 and u( 0. The flow field indicated in Figure 3(a) is called a source. Sources are characterized by their strength, denoted by m, which is defined as the volume of fluid leaving the source per unit time per unit depth of the flow field. Then m EMBED Equation.DSMT4 2(c. Then, c may be replaced by EMBED Equation.

DSMT4 , giving the following complex potential for a source of strength m F(z) EMBED Equation.DSMT4 log z. Then the complex potential for a source of strength m located at the point z z0 will be F(z) EMBED Equation.DSMT4 log(z ( z0). (10) Clearly, the complex potential for a sink, which is a negative source, is obtained by replacing m by ( m in (10). Now, consider the constant proportionality in the logarithmic complex potential to be imaginary.

That is, consider F(z) (ic logz, where c is real and the minus is included to give a positive vortex. Then, using cylindrical coordinates, F(z) (ic log(Rei() c( ( ic log R. Then, from (4), the velocity potential and the stream function are ( c(, ( ( c log R. The velocity components may be evaluated by use of the complex velocity W(z) EMBED Equation.DSMT4 . Comparison with (6) shows that the velocity components are uR 0 and u( EMBED Equation.DSMT4 . Hence, the direction of the flow is positive for c 0, and the resulting flow field is called a vortex.

A vortex is characterized by its strength, which may be measured by the circulation ( associated with it. The circulation ( associated with the singularity at the origin is ( EMBED Equation.DSMT4 EMBED Equation.

DSMT4 2(c. Then, c may be replaced by EMBED Equation.DSMT4 , giving the following complex potential for a positive vortex of strength (, F(z) (i EMBED Equation.DSMT4 log z. Then the complex potential for a positive vortex located at z z0 will be F(z) (i EMBED Equation.DSMT4 log(z ( z0). (11) 1.

5 Flow due to a doublet The function EMBED Equation.DSMT4 has a singularity at z 0 and in the context of complex potentials, this singularity is called a doublet. However, it turns out that the doublet may be considered to be the coalescing of a source and a sink and the required complex potential may be obtained through a limiting procedure that uses this fact. Referring to the geometry indicated in Figure 4(a), consider a source of strength m and a sink of strength (m, each of which is located on the real axis at a small distance ( from the origin. The complex potential for such a configuration is, from (10) F(z) EMBED Equation.DSMT4 log(z () ( EMBED Equation.DSMT4 log (z ( (), EMBED Equation.

DSMT4 log EMBED Equation.DSMT4 EMBED Equation.DSMT4 log EMBED Equation.DSMT4 .

If the nondimensional distance EMBED Equation.DSMT4 is considered to be small, the argument of the logarithm may be expressed as follows F(z) EMBED Equation.DSMT4 EMBED Equation.DSMT4 .

The logarithm is now in the form log (1 (), where ( 1, so that the equivalent expression ( O((2) may be used. Then F(z) EMBED Equation.DSMT4 . It is now propose to let ( ( 0 and m ( ( in such a way that EMBED Equation.DSMT4 , where ( is a constant.

Then the complex potential for a doublet becomes F(z) EMBED Equation.DSMT4 . Thus the complex potential EMBED Equation.DSMT4 may be thought of as being the equivalent of the superposition of a very strong source and a very strong sink that are very close together. The stream function will be established as follows, F(z) EMBED Equation.DSMT4 EMBED Equation.DSMT4 . (a) (b) Figure 4.

Then, ( EMBED Equation.DSMT4 . Thus, the equation of the streamlines ( constant is x2 y2 EMBED Equation.DSMT4 0 or x2 EMBED Equation.DSMT4 But this is the equation of the circle of radius EMBED Equation.

DSMT4 whose center is located at y ( EMBED Equation.DSMT4 . This gives the streamlines pattern shown in Figure 4(b). The complex velocity for this complex potential is W(z) ( EMBED Equation.DSMT4 ( EMBED Equation.DSMT4 ( EMBED Equation.DSMT4 .

Hence, the velocity components are uR ( EMBED Equation.DSMT4 cos ( and u( ( EMBED Equation.DSMT4 sin (.

The flow field illustrated in Figure 4(b) is called a doublet flow, and the singularity that is at the heart of the flow field is called a doublet. Then the complex potential for a doublet of strength ( that is located at z z0 is F(z) EMBED Equation.DSMT4 . (12) 2.

Flow Past a Rigid Cylinder 2.1 Flow past a circular cylinder without circulation Consider the superposition of a uniform rectilinear flow and a doublet at the origin. Then, from (7) and (12), the complex potential for the resulting flow field will be F(z) Uz EMBED Equation.DSMT4 . (13) On the circle R a, the value of z is aei(, so that the complex potential on this circle is F(z) Uaei( EMBED Equation.DSMT4 EMBED Equation.DSMT4 . Thus, the value of the stream function on the circle R a is ( EMBED Equation.

DSMT4 . For general values of (, ( is clearly variable, but if we choose the strength of the doublet to be ( Ua2, then ( 0 on R a. The flow pattern for this doublet strength is shown in Figure 5(a).

For R ( a, the flow field due to the doublet of strength Ua2 and the uniform rectilinear flow of magnitude U give the same flow as that for a uniform flow of magnitude U past a circular cylinder of radius a. The latter flow is shown in Figure 5(b). (a) (b) Figure 5. Then the complex potential for a uniform flow of magnitude U past a circular cylinder of radius a is F(z) U EMBED Equation.DSMT4 . (14) 2.2 Flow past a circular cylinder with circulation If a vortex was added at the origin to the flow around a circular cylinder, as described in the previous section, the fact that the circle R a was a streamline would be unchanged. Thus, from (14) and (11), z0 being zero in the latter, the complex potential for the flow around a circular cylinder with a negative bound vortex around it will be F(z) U EMBED Equation.

DSMT4 EMBED Equation.DSMT4 . In order to evaluate the constant c, the value of the stream function on the circle R a will be computed.

Then, putting z aei(, the complex potential becomes F(z) EMBED Equation.DSMT4 , F(z) 2Uacos( ( EMBED Equation.DSMT4 .

Hence on the circle R a the value of ( is indeed constant, and by choosing c ( EMBED Equation.DSMT4 , the value of this constant will be zero. With this value of c, the complex potential becomes F(z) U EMBED Equation.DSMT4 EMBED Equation.DSMT4 , (15) which describes a uniform rectilinear flow of magnitude U approaching a circular cylinder of radius a that has a negative vortex of strength ( around it.

The corresponding velocity components will be evaluated from the complex velocity. W(z) U EMBED Equation.DSMT4 , W(z) EMBED Equation.DSMT4 EMBED Equation.DSMT4 EMBED Equation.

DSMT4 . Hence, by comparison with (6), the velocity components are uR EMBED Equation.DSMT4 , (16) u( EMBED Equation.DSMT4 . (17) On the surface of the cylinder, R a, we have uR 0, u( ( 2U sin ( ( EMBED Equation.DSMT4 . The fact that uR 0 on R a is to be expected, since this is the boundary condition. For this flow field the stagnation points are defined by sin(s ( EMBED Equation.

DSMT4 , (18) where (s is the value of ( corresponding to the stagnation point. For ( 0, sin(s 0, so that (s 0 or (, which agree with Figure 5(b), for the circular cylinder without circulation. For nonzero circulation, the value of (s clearly depends upon the magnitude of the parameter EMBED Equation.DSMT4 and it is convenient to discuss (18) for different ranges of this parameter. First, consider the range 0 EMBED Equation.DSMT4 1. Here sin (s 0, so that (s must lie in the third and fourth quadrants.

There are two stagnation points. When EMBED Equation.DSMT4 1. Here sin (s ( 1, so that (s EMBED Equation.DSMT4 .

The corresponding flow configuration is shown in Figure 6(b). (a) (b) (c) Figure 6. Finally, consider the case where EMBED Equation.DSMT4 1. Since it seems likely that any stagnation points there may be will not lie on the surface of the cylinder.

Then, if Rs and (s are the cylindrical coordinates of the stagnation points, it follows from (16) and (17) that Rs and (s must satisfy the equations EMBED Equation.DSMT4 , (19) EMBED Equation.DSMT4 .

(20) Since it is assumed that the stagnation points are not on the surface of the cylinder, it follows that Rs ( a, so that (19) requires that (s EMBED Equation.DSMT4 or EMBED Equation.DSMT4 . For these values of (s, (20) becomes EMBED Equation.DSMT4 .

(21) The equation for Rs now becomes EMBED Equation.DSMT4 or Rs2 ( EMBED Equation.DSMT4 a2 0. Hence, Rs EMBED Equation.DSMT4 or EMBED Equation.DSMT4 EMBED Equation.

DSMT4 , EMBED Equation.DSMT4 EMBED Equation.DSMT4 , where the dots indicate terms of order EMBED Equation.

DSMT4 or smaller. So that the coordinates of the stagnation point in the fluid outside the cylinder are (s EMBED Equation.DSMT4 , and EMBED Equation.DSMT4 . (22) This gives a single stagnation point below the surface of the cylinder. The corresponding flow configuration is shown in Figure 6(c). 3. Application of Blasius Formula to the Flow Past a Rigid Cylinder 3.

1 Blasius formula The components of the volume flow that pass through this element of surface are also indicated. Then the Newtonian mechanics for the x-direction may be expressed to the following equation ( X ( EMBED Equation.DSMT4 Also, the mass efflux across the element of the surface C0 is ((udy ( vdx), so that the product of this quantity and the x component of velocity, when integrated around the surface C0, gives the net increase in the x-component of momentum. Figure 7. The net external force acting in the positive y direction must equal the net rate of increase of the y component of the momentum yields the equation ( Y EMBED Equation.DSMT4 So that, X EMBED Equation.DSMT4 Y EMBED Equation.

DSMT4 . The pressure may be eliminated from these equations by use of the Bernoulli equation, which for the case under consideration, may be written in the form p EMBED Equation.DSMT4 ((u2 v2) B, where B is the Bernoulli constant. Then by eliminating the pressure p, the expressions for X and Y become X EMBED Equation.DSMT4 Y EMBED Equation.DSMT4 where the fact that EMBED Equation.DSMT4 for any constant B around any closed contour C0 has been used. Consider the following complex integral involving the complex velocity W EMBED Equation.

DSMT4 EMBED Equation.DSMT4 EMBED Equation.DSMT4 X ( iY. That is, the complex force X ( iY may be evaluated from X ( iY EMBED Equation.DSMT4 where W(z) is the complex velocity for the flow field and C0 is any closed contour that encloses the body under consideration.

The quantity M is the moment acting on the body about its center of gravity. Then, taking clockwise moments as positive, moment equilibrium of the fluid enclosed between C0 and Ci requires that (M EMBED Equation.DSMT4 . The hydrodynamic moment M gives M EMBED Equation.

DSMT4 Substituting p B ( EMBED Equation.DSMT4 ((u2 v2), from the Bernoulli equation gives M EMBED Equation.DSMT4 where the fact has been used that EMBED Equation.DSMT4 for any constant B and any closed contour C0. The moment M may be put in the following form, M EMBED Equation.DSMT4 Consider the real part of the following complex integral Re EMBED Equation.DSMT4 EMBED Equation.DSMT4 EMBED Equation.

DSMT4 EMBED Equation.DSMT4 ( M. That is, the hydrodynamic moment acting on a body is given by M ( EMBED Equation.DSMT4 where W(z) is the complex velocity for the flow field and C0 is any closed contour which encloses the body.

3.2 Force and moment on a circular cylinder without circulation A force exists on a circular cylinder that is immersed in a uniform flow. The magnitude of this force may now be evaluated. The complex potential for a circular cylinder of radius a in a uniform rectilinear flow of magnitude U is F(z) U EMBED Equation.DSMT4 . Then the complex velocity for this flow field is W(z) U EMBED Equation.DSMT4 .

Therefore, W2(z) EMBED Equation.DSMT4 . From the Blasius integral law, X ( iY EMBED Equation.DSMT4 EMBED Equation.DSMT4 EMBED Equation.DSMT4 0. So, Y 0. In order to evaluate the hydrodynamic moment M acting on the cylinder, the quantity zW2 must be evaluated zW2(z) U2z ( EMBED Equation.

DSMT4 But from the Blasius integral law M ( EMBED Equation.DSMT4 , M EMBED Equation.DSMT4 0. There is no hydrodynamic moment acting on the cylinder. 3.3 Force and moment on a circular cylinder with circulation The complex potential for a circular cylinder of radius a in a uniform rectilinear flow of magnitude U and having a bound vortex of magnitude ( in the negative direction is F(z) U EMBED Equation.DSMT4 EMBED Equation.

DSMT4 . Then the complex velocity for this flow field is W(z) U EMBED Equation.DSMT4 . Therefore, W2(z) EMBED Equation.DSMT4 . But, from the Blasius integral law, X ( iY EMBED Equation.DSMT4 EMBED Equation.

DSMT4 . Hence, the residue of W2(z) at z 0 is EMBED Equation.DSMT4 . Then the value of complex force is X ( iY EMBED Equation.DSMT4 ( i(U(. The value of the lift force is Y (U(.

In order to evaluate the hydrodynamic moment M acting on the cylinder, the quantity zW2 must be evaluated. From the expression for W2(z) that was established above, zW2(z) EMBED Equation.DSMT4 But from the Blasius integral law M EMBED Equation.

DSMT4 EMBED Equation.DSMT4 EMBED Equation.DSMT4 0. There is no hydrodynamic moment acting on the cylinder. 3.4 Cylinder in a tunnel If F(z) ( ((, z ic cot EMBED Equation.DSMT4 (, then ( ( (( , ( ( ((, and ( is constant when ( constant, while ( decreases by 2(( when we go round one of the circles ( constant.

The potential F(z) represents the flow due to the circulation 2(( about a cylinder ( (1 enclosed within a cylinder ( (2 (cylinder in a tunnel). Eliminating (, we obtain z (ic cot EMBED Equation.DSMT4 , F(z) 2 EMBED Equation.

DSMT4 the complex velocity for this motion is W EMBED Equation.DSMT4 . Thus, by the Blasius formula, the force on the inner cylinder is given by X ( iY EMBED Equation.

DSMT4 EMBED Equation.DSMT4 EMBED Equation.DSMT4 , X ( iY ( EMBED Equation.DSMT4 . Therefore X ( EMBED Equation.

DSMT4 , Y 0, and the resultant fluid thrust therefore tends to increase the distance between the axis of the cylinder and the axis of the tunnel. Figure 8. An interesting case occurs when the radius of the circle (2 becomes infinite, so that this circle coincides with the radical axis. We have then the case of a cylinder whose axis is parallel to the wall. The cylinder is urged towards the wall with the force EMBED Equation.DSMT4 . Figure 9. Drawing the tangent OP, we have, since A is a limiting point, c2 OA2 OP2 OC12 ( a2 h2 ( a2, where h is the distance of the axis from the wall and a is the radius.

Hence the force is EMBED Equation.DSMT4 REFERENCES 1 Chorlton, F., Textbook of Fluid Dynamics, D.Van Nostrand Company Ltd., London, 1967. 2 Currie, I.G.

, Fundamental Mechanics of Fluids, Third Edition, Marcel Dekker, Inc., New York, 2003. 3 Milne-Thomson, L.M., Theoretical Hydrodynamics, Fifth Edition, Macmillan and Co. Ltd.

, London, 1968. BLASIUS FORMULA AS APPLIED TO THE FLOW PAST A RIGID BOUNDARY Tin Min Naing PhD.(Res)-Math-5 Paper presented for the PhD. Candidature in Mathematics University of Mandalay May, 2017 PAGE PAGE 24 u y O v uR u( x P ( x y O x y ( O x y O y x ( ( ( m m ( ( O x y C0 X Y M udy vdx dx dy x y O A c1 c2 ( ( ( (1 (2 O A c1 ( ( (1 P Zffa)S5.DU. x3 uwh qBDlJtR,bi 4 YI.

hG M3PPsUjApkWs2 0gjm2C/2 XNy0 VGEDFgCgUNi3FbNW1WGyhdjlk(nPrmueJ,kpfKU1Xy5T EY1L Erx0lWZuEVFQzdtdd2 TTFbijIMM5WOQHh EUmFBS,c.Kn)v9y QruXE9vQ(Tpn6vN2sc QruXE9vQ(Tpn6vN2sc 3,[email protected] 2tHc4hQk_JrGh0IZq SK_w7-nQ1Z/XQ6-LwKB)tgg6,LTdvQqbDUf3oN1Bgu H.m6ZV0uIG G7C_d-2mvpBkYLfYtfXCfhS-)47Zn AMnzHJENB0wny3VR_5aD(Oe5cUs(IZPcL)kGPVBH rS-y AG3WP4NB_pJSNwK BrMm7WawOE K DAHwrLXXtVp)ZKJ NE Ue2tz8Zmb /0lRczxT5-XA5Ji0qF ci CaQJLI//yvlxXBgsxr3giFbXLvypmEkoU.TtKfxk/Nfd_o9Eq)EUH(rk1oY7.N.9_SZ/[email protected] dBeDQ9tazZENZNnX1ULh5qF,xJ4QhC0d ,,IIFVVI42qBYBs-GOWd/0jb lInnh0FGCWJb8LLSB VdLBy6Z-mX8QhmUEUKnvZf1nrhS9Hxpp FA7Z,E op [email protected] .1sCKH,ppzU4tG bho,.

b_8ktU_l8_etTl2Lg,X(C-33wCn/QGDo-(ueJelrVF90m95 /j9uLXz/aTT4 Nnx dklztLa.AMN.p,S8-V-8GumJBWVfbzOzot)wxVqSeZpil cvlEoUueFCxJoUfVsefFXHniMnb/u(sef127QFgQoCdys9zjv/D)L7c/wzxOCsMJsZY fUSnLqjTlzJ4SKJ(UnBt6kLcO_mizSF661(Tlf4.hhBitKjdq4N5czIb8E3cy JcQTPGa.

p,0haho80/ gLCZ9fkxxCh. Pn7k-s,( J2iwJMcQ kV/[email protected]Js(0T,l/2B765dKnD [email protected]@xhKrtU8,KN QI_FUptODI,lRiUlBvJ1orGDd,0N [email protected]@xhKrtU8,KN QI_FUptODI,lRiUlBvJ1orGDd,0N /6 FO5 F8.T VO [email protected] lY22q3IF G0OgUwd,rU6T_g(cjUAKO Wgq4rFk8c LL(K02m7L_V/5OqI/rVD4v19.C7m2nc.R/Nl6HxYvB. jaMfpI-bhLs9w-((ujjvs([email protected](bK9jjV-UN_f2ZR/,hupsS4E3eDHZAb1 XL a8sKkdE2Qg5lN.

uxuTh [email protected] DjbwwnUjk_ktpzpqyp4Gxk1JyXauxaW9(tK.tK.tK.tK.tK.tK.tK.

tK.tK.tK.tK.//znu ywpWsK__5K//KsBooNItpO56kS8M_Tmn3sUWK__r1o/Wq.vP.

S7M9/oofxrYuo/Kwv.3z_uSH.cO.B/[email protected]/W3ytnv8g.

kzxNWwyC5g.OoceVYs_k79k aqk_W_skSSYCaX._//nt/wFj5uzvsrksx9)y_CLqyqyY_q.QJq_ystk__8s(,WYrVww2FgUnCkKvoX1LMxh8Ywv5x9.SYkccpGz8vxtDiskvBP.,pnYSob.uY/iO_rK/x_NjEtcyY3-uKK ctggUpOOb3vwTpfnzecdWua,7WmyCsPlrstKKo_11XE77z1_39VGWOB- 0rmNg.

Ka_AyoTn7dqgpIX8yKKWjoMoz2Ldln4tYWoo38YnXwwYOoUqXWB5NbMw8gul7/9g,nUYxx,h oqLukO0ce6wNX_vvy5Gw Wc2v7f1u_rG_YGd9E_wbSN2Kx_k9zKv//Ir77Mn2kkm1tXstv/8)I4j3ngE_Eebkmongcwi8yW//.SqigW0tMOoRQ9qE3 4bkqk3ZzVU.tUZ8Ba5fWqzw.wiq1O__8yrkW oxuO9.STsaYfI)zlqvWMjkgOb-OtyuPE w1x1X.heKVi5so46c94cTsiEPvyGp31upO6ba,k_3wOO7Ow6btk_OrPwS_OW/tvooZIqkkvGds_wG LHom/dms2rtnGWL,xmvHMIwMnwC1v)i3DrVgwnp(TFfv5jbqwtGtv0a8UO5mfa.

(q/6crQFbX2lSNcby)jvyyWHi i3g.MKLyn7lkk7Vgy85/lEKw,[email protected])[email protected] hvoClU_UCinv//LoGg9 SmV_y7j9ksr9lnuEh)sUlY8fc2/ZWUc0yuMDN_UOx_jqS9)wTlu9mls a79c1ykzUXakV.6gAp8w/qSiO68W.

wk_WWmN8.LyhxqQQGoorD)aui.ej CIZ06VdiTuu6cTrh26C_H-Se9ksr,jTshWe(fQ52-ZCS8irz7yvw oZ./d1cuz9bv-MopmU7cg9jVFcvrVv_c8CZl7_/qyE7UmMS0UOercSa7 K6w)mg-chnARr2vHnqmmnVwMO.maw.n1f7yrsAdG(rZMrvKCi Kpv0c9fkqnb7)voh6)NH_vbVmc0cyc3c-wrfKwJh3,vC colxqwcvoq8xpmWG9bU.PmYwBqiC1S_CucRwmXY_8kHMri6u_11dvkOcMiXq)aKQ2GdzP 6wwz4.

C11l1Oa kC1/__p ) y0O/)aDyvgoycj94vOpF,o,RY5Mi-GCRtm2RVlkIZF3s/l9XcscN/L3t SCx OOM ,w6 xCwV-_w1/pyu0)eLSyId fm5vEyoS tuHjxrD6cC87ovyN zEi.hEXA0zwT/_0owsWl_NE6mW3Frla1 c/3W3t._SI,wpOaIuPMbiPsJ2A(XgV(0o5_5lv-F(2RuGZKog3MW3 xEu(57d.uWD/2_ZUrlv69kqofpbuyF79Ga-ulYgyouVIVakk_RDeWys ,K/Mrcnt3VUyQ4Ol8JWWy.

UpkWwCX2k7)QmuJeZJ5kwMGyrZe9CV8Xu81mxC_WobI6X7YqGoF,qe,7yKLY3L Hq-b1wCNUrQmM K/bn vFp9T.iuYrOSOLI7DuVV093byUzxwmk)LE y3vfm6uwmv1oibJ/56gXrRypygb)8M8bIWXufkqXRcL7vzcg)8UzkIawmrho)c-rX0fmLhNMhwg lBJy7M6N5CFrYYgVtoKeXwsRnQqNUGvvM/nx8VozzKQzO-l/NWn .jgI3j8zM30eW1C(tXu7ZfGEsI-q,VL_v7au.otHplsCm56ghSUWa/0ms-ZtHGBrxO7wZm8.

,Vx(y7MRgz-2qr,swin8vj7Fonvc oxclvCwgdZ/n-c(bNXoZslZWnKY/sUVGb_kJ.kqOBlrK// ltiMOk6KY.k4pNn,ws3Y8366rH_qny-mk3cl9mrbM(b1/[email protected],3ltO-EX-mpg3wnYUUgK12v e/dsesWx2YcOeeq.N6X99c,.zea.

Rbu3ksP/rUyxZ.gxpgV. DyxOcT/ 1tey49LMTgysp/5XawhL5bX(MXmYjcv v8W,9pxKq69qz21kz/ 6-S90mfuDQ3GSGo3gnVJYF/mojlN2g cy8XMozaolDyo8WB8YL)Dweb56w8Wwt8/MKo0oL2E8IoxAmW1Kl,@[email protected] v 96bxM-s8q87qzRCnEcGqV5oly9owW oUfspsk/.MIgM-sjGveE-lrzAsszY87Mg c oygzqRGWuKWGqo9SrDV83zcgGQCqbNamcccmQFe8jhc_8.

qu8A_7bumkoGe,[email protected])aSm7XoBSgbx6ROmlEF4wBux0aJ5zXzzcVpM5/kq,qFv [email protected] WuMfeYkqoR.SYncj8vxU6elb5Z(K/_smh w .9oAWvGkk95wm8UeT91YkI1ykgk YK1FaL1TUk_Zu1Oo/cjG/ro5Qln.

koqw.5niQW-__IeIbobLnYpfXDh5mc5XZNjJr .YgjpnY/Dy-vV1 N3 X.

s_0aI9,vb,YwptKL.6byczm [email protected] ExP_.Fboym.8.eYxKUAySvYcgouKb /o2UKo lbs-L6et2wSmv7aTxIq1/8fUcp. g8pz3 fsMobccxzvSy0/GG alWrBY))bmYS4aZFuEGf9YsbgJw1Z6qUUQvQZewqcyLYu1YZ6ri3xJo_eda,_ C1WxKeW.fUeWM-)gV3fdHgjL/pCat6LnSEzf6z 8F-vpw(v7lvgaGsBsUswd)/dlxkdrA83MEvoVwo) aEJ.jeUwasg7i8SWqAws gMn tWB/nx(Sj,B.

C-Cgw-Ee0rVqIbaXXvebMcgoga8WE)1Z84XrsU.jD3jSWjUAOW_Q,S9Hps6Wsk_0EG.3/ukIEZcY0/O1GU)HkmUF6JGW F3).cCwZTKapZmV.msYk.

f-f0xbxaasnnD-on5.mp-Mq1Itk_Zo,_-60ngYz/wXsS-pl)pR-mrzem tspT1lOSEXw.d3k3LHlew/TmicZsqGW18eVozoc6,qn9lbebzKycrZ8ZlRjllch.8Fe9tnVD,.

[email protected][email protected] eTOWly),n-zwEi-OO7UpcF__qk1XggglAWsIlg byCpNXCZwsvw-vOaVo8pqtYp(bw87K/t0_z1YXo,/(grsaSZczn/WTswtqSk3s-ayOP9t9wTvKaYDrVqXmn1n.3.Ji1.lc1b0n)cqamUN9ngKqOr.R3jOH1n.ZqYz19zvZl0rKxclbLWhbyaW.YU/qt,bwrwzw(8DP/A_otz8q9dqYxGzylM15SfoUzsAx/w717xvcRk2K6 Gkl/obxggxZqtYzoM/KAU/31g)wW yj_L7gEP kGq_Tef6nRcX_Kv fgtXxuocqb3gq1n.q,FllbgWse_F2Os6 OLYx7s.0K_vww eGap43pmtX7rCK,3GKWQVgU d0A3EVKafvS1-Viqm2Gz69gAgtoqKkw76risC8K0gswzSOV 6_5-KwE.TfUS-9N8oKjnm/jf9 pl/86qfL2U wrHGtcTKrTPv8w,8cV4gV1.8ul1n.O2qa1,Z,glrXVjqe15ek83YXxlIKz1vK6-/ht,h1.d kzklcRoZsaOr3zdI./9qc_C y,kZzqwrvDe7_qr36s,dmwuV-V- _j 3wo.slqsG1nKvWXO.3VW_)zQq.B9E6miYqnWciLCW68xa.O5e76wpNpgbglZ/VY5y_DyweK9NHKxmn)38IHlY 8Jn)VgC8_L.rg)HJ0KvhP hkuwon 78DYuOnMkQel.rVbs 3Bbd_Vz1XN.mcw1Of-yO9nhUmcuc1wSyIU8wdK0,ie/6TrrO-gVDTg,Kqkvq9OqOHaGosR)-5H3UlfqxOxu6_zoltw3E-LawrtPuNCe0.qV-qfouPlllzgBk XO,S_KI,3z687B8sEzcooxRkoH N0/poGT15Ue92YSv 0j(FU()8/6mCpP9W V WRcB5weguwwOs76cg.U)ecv(nYyNrm7D_gPKoOtcl0i K-s5w/Qlk3bKxc_o44eqOTxiobNocgx/3bC n.Gm6dmX9Ga)sw pzRn-m cqg/Va_96teN)oqgwgxo-ysec-ueOQU( GjBF Vz0dyGguH1rhCvcZ1GllHSR P3M9n8nW6VUnS E92ss6eA3Na24fKu1g1 (yFZO312o1Eyd,czQ.9m/[email protected]_ VUGJ6QmWQtZCg8nsGkNWKZelbuosS7qK9beY6b/CbELw0q1UpaSH1e Zmom9cc-bZ8ya2Ree._bYsv rspg-7Bagn8vXv8uiyWdtsuT0 8m1YO7Q Hl.x-iiSlaIo.nozIYecYcgL.t.qsxdsR.,/ bk-XXw evtqMmquXZcrv,pm- .Oz/1cP3nwC_mn_(uxilI8XvEycc.m2B-zbNi(exw/-jRWO8.cIOQ-8_ixSEbixnl7QS8Lcq4Wfs2o51X56l23mTOO15l 9w9RNf0s.yO.H2gtN7KZ.zUom8MNx.P7psCO.1ish H_mUmoy76Hdk.uN/qn dem4dnBw,enm6mmY_t2Z /INiqRSFs_YpD/uswkSif7y.9Ey.o8f/uV [email protected]_6(qqP(Pfmy(-sF1wUgcc.pm5qB7Kczrn2rc1p.q6bjsW/ 9A/spotYfM [email protected] qrblkFgk EdWwUI/M8cratu85GUSh6mlslwk)Ig6Xu25/8Au2Emvr.DaIjnM)pZtz8nERKjxo.A7W0Tx0AxzUpOGtQ__YE/nEMMw) u(lK/ REWqwCwAzOz)mnVvsemF elqCc/f5sNl6lkmjOs2Kp4ck5dob0j7/UsyO/zwvnh.WkLq_sN9yGKot_WwccWvzOYgu _cqB.MetcMZA Sm/ cQL.CSm DgJ,GoON/hC2roCrVCusGoKq -1af9/[email protected],44 Pp-mo6rKB sSN2/2nxJXEt01 P s3qqooS1uJTCLnvml_cJN1 zwjKEZp6).XNsszNGo93xLkt3/s6g7GWO-7sllaI 8,A93a Uy0ikSvur2w-kwi7z/FX sYWTS_4gsW tFFcJJ79-GN,WxrF1_5YEu9OkS(oyCeVyM rEVFuS__tS_ Wty_9A/ U)lxG6(w76YoZO/Ub.U)[email protected] Rc5u9RKO.98_w_exuApgY X_.CwZ9-eEZOqSA8qU/9Iydou2K.ttm6)14myb5UmtnNgD/WVZv6kO9rw77.z37w..W_uwsYlqXb/rd/.YWUXmrkSnsv Kl3eK84Z,vAmqGrmn/LZyfTm/szpRn._mLN7)ngBw8n-uuL (RggDSWMN_t4mQKzTen2gZ2KncjYsqIN)Hhou qSUPmid/x,Gs17G7 At6z-Eh6r Y [email protected](vSZ-Gr wCSmXwygvr(t1 gw2/bNNW_qnv9vb6mbuXZPm7L5NY- CBdVk_)[email protected] VucGbON-u38_uc0sHTTJSsmqugU.D0lqSDfw/c,un8z,ClQ7cU-.YOtKsfWre8)hCmGaQOlqu [email protected],p M9iu2OXlTqj(/CtJ-OtiNctb/hXu.6s3zSrb 4fe-_,tP7h.7OOx8S.esl2sXruxys P4w/vGySneWr9uSuvfqR9aN79ni0gEW1A.Vakz/4U6MgIC FglN-Olf8vunn)Sbe_Kj7T_ha3.ru-V,YU6xFx6b/[email protected] 2OLunm _4ds SBSWZo3JfeaS_3WGu(sMihXekO3WQge_G1ZoSoxjY64OWsEC lI Or3uUGmi0erqs9L_kvNaM1Dd-_iKcU/Kur0l7CjS1OWW0PCLsbN_VOZCMf7IvH9bo_vA8nSV-_63m6qf9 8 ALr__bD-qcceW6//eUu)mvRoyFO62-9Sz9zwWsrIsZrxSba)qpw_B1Kok3n mY/uYn-P9usnQcyF9wweUks rmss)[email protected])Eie/Y/n,_s5fTOVeiG,vgcFol_ kjiZU9yNw9ldVCnm_VmVN/9K-bwWemoV.0YcNOlCb[email protected]k elas6N79s oz315cjqXNf0//aKutpRl3_6r82nW GNw31Wtb7bsuaK//[email protected],[email protected],QC9)Gol)sz)kscK8mm0y,ztI8Hml7aCU-guNZ2u51KOFSZCbckO_zR7G9S 1z3/m)O2 X2oWlq3gv7ol66u9l 9XWy)Oa-oyKwlJil05_h(gsgUWss qg_g [email protected] DjbwwnUjk_ktpzpqyp4Gxk1JyXauxaW9(tK.tK.tK.tK.tK.tK.tK.tK.tK.tK.tK.//znu ywpWsK__5K//KsBooNItpO56kS8M_Tmn3sUWK__r1o/Wq.vP.S7M9/oofxrYuo/Kwv.3z_uSH.cO.B/[email protected]/W3ytnv8g.kzxNWwyC5g.OoceVYs_k79k aqk_W_skSSYCaX._//nt/wFj5uzvsrksx9)y_CLqyqyY_q.QJq_ystk__8s(,WYrVww2FgUnCkKvoX1LMxh8Ywv5x9.SYkccpGz8vxtDiskvBP.,pnYSob.uY/iO_rK/x_NjEtcyY3-uKK ctggUpOOb3vwTpfnzecdWua,7WmyCsPlrstKKo_11XE77z1_39VGWOB- 0rmNg.Ka_AyoTn7dqgpIX8yKKWjoMoz2Ldln4tYWoo38YnXwwYOoUqXWB5NbMw8gul7/9g,nUYxx,h oqLukO0ce6wNX_vvy5Gw Wc2v7f1u_rG_YGd9E_wbSN2Kx_k9zKv//Ir77Mn2kkm1tXstv/8)I4j3ngE_Eebkmongcwi8yW//.SqigW0tMOoRQ9qE3 4bkqk3ZzVU.tUZ8Ba5fWqzw.wiq1O__8yrkW oxuO9.STsaYfI)zlqvWMjkgOb-OtyuPE w1x1X.heKVi5so46c94cTsiEPvyGp31upO6ba,k_3wOO7Ow6btk_OrPwS_OW/tvooZIqkkvGds_wG LHom/dms2rtnGWL,xmvHMIwMnwC1v)i3DrVgwnp(TFfv5jbqwtGtv0a8UO5mfa.(q/6crQFbX2lSNcby)jvyyWHi i3g.MKLyn7lkk7Vgy85/lEKw,[email protected])[email protected] hvoClU_UCinv//LoGg9 SmV_y7j9ksr9lnuEh)sUlY8fc2/ZWUc0yuMDN_UOx_jqS9)wTlu9mls a79c1ykzUXakV.6gAp8w/qSiO68W.wk_WWmN8.LyhxqQQGoorD)aui.ej CIZ06VdiTuu6cTrh26C_H-Se9ksr,jTshWe(fQ52-ZCS8irz7yvw oZ./d1cuz9bv-MopmU7cg9jVFcvrVv_c8CZl7_/qyE7UmMS0UOercSa7 K6w)mg-chnARr2vHnqmmnVwMO.maw.n1f7yrsAdG(rZMrvKCi Kpv0c9fkqnb7)voh6)NH_vbVmc0cyc3c-wrfKwJh3,vC colxqwcvoq8xpmWG9bU.PmYwBqiC1S_CucRwmXY_8kHMri6u_11dvkOcMiXq)aKQ2GdzP 6wwz4.C11l1Oa kC1/__p ) y0O/)aDyvgoycj94vOpF,o,RY5Mi-GCRtm2RVlkIZF3s/l9XcscN/L3t SCx OOM ,w6 xCwV-_w1/pyu0)eLSyId fm5vEyoS tuHjxrD6cC87ovyN zEi.hEXA0zwT/_0owsWl_NE6mW3Frla1 c/3W3t._SI,wpOaIuPMbiPsJ2A(XgV(0o5_5lv-F(2RuGZKog3MW3 xEu(57d.uWD/2_ZUrlv69kqofpbuyF79Ga-ulYgyouVIVakk_RDeWys ,K/Mrcnt3VUyQ4Ol8JWWy.UpkWwCX2k7)QmuJeZJ5kwMGyrZe9CV8Xu81mxC_WobI6X7YqGoF,qe,7yKLY3L Hq-b1wCNUrQmM K/bn vFp9T.iuYrOSOLI7DuVV093byUzxwmk)LE y3vfm6uwmv1oibJ/56gXrRypygb)8M8bIWXufkqXRcL7vzcg)8UzkIawmrho)c-rX0fmLhNMhwg lBJy7M6N5CFrYYgVtoKeXwsRnQqNUGvvM/nx8VozzKQzO-l/NWn .jgI3j8zM30eW1C(tXu7ZfGEsI-q,VL_v7au.otHplsCm56ghSUWa/0ms-ZtHGBrxO7wZm8.,Vx(y7MRgz-2qr,swin8vj7Fonvc oxclvCwgdZ/n-c(bNXoZslZWnKY/sUVGb_kJ.kqOBlrK// ltiMOk6KY.k4pNn,ws3Y8366rH_qny-mk3cl9mrbM(b1/[email protected],3ltO-EX-mpg3wnYUUgK12v e/dsesWx2YcOeeq.N6X99c,.zea.Rbu3ksP/rUyxZ.gxpgV. DyxOcT/ 1tey49LMTgysp/5XawhL5bX(MXmYjcv v8W,9pxKq69qz21kz/ 6-S90mfuDQ3GSGo3gnVJYF/mojlN2g cy8XMozaolDyo8WB8YL)Dweb56w8Wwt8/MKo0oL2E8IoxAmW1Kl,@[email protected] v 96bxM-s8q87qzRCnEcGqV5oly9owW oUfspsk/.MIgM-sjGveE-lrzAsszY87Mg c oygzqRGWuKWGqo9SrDV83zcgGQCqbNamcccmQFe8jhc_8.qu8A_7bumkoGe,[email protected])aSm7XoBSgbx6ROmlEF4wBux0aJ5zXzzcVpM5/kq,qFv [email protected] WuMfeYkqoR.SYncj8vxU6elb5Z(K/_smh w .9oAWvGkk95wm8UeT91YkI1ykgk YK1FaL1TUk_Zu1Oo/cjG/ro5Qln.koqw.5niQW-__IeIbobLnYpfXDh5mc5XZNjJr .YgjpnY/Dy-vV1 N3 X.s_0aI9,vb,YwptKL.6byczm [email protected] ExP_.Fboym.8.eYxKUAySvYcgouKb /o2UKo lbs-L6et2wSmv7aTxIq1/8fUcp. g8pz3 fsMobccxzvSy0/GG alWrBY))bmYS4aZFuEGf9YsbgJw1Z6qUUQvQZewqcyLYu1YZ6ri3xJo_eda,_ C1WxKeW.fUeWM-)gV3fdHgjL/pCat6LnSEzf6z 8F-vpw(v7lvgaGsBsUswd)/dlxkdrA83MEvoVwo) aEJ.jeUwasg7i8SWqAws gMn tWB/nx(Sj,B.C-Cgw-Ee0rVqIbaXXvebMcgoga8WE)1Z84XrsU.jD3jSWjUAOW_Q,S9Hps6Wsk_0EG.3/ukIEZcY0/O1GU)HkmUF6JGW F3).cCwZTKapZmV.msYk.f-f0xbxaasnnD-on5.mp-Mq1Itk_Zo,_-60ngYz/wXsS-pl)pR-mrzem tspT1lOSEXw.d3k3LHlew/TmicZsqGW18eVozoc6,qn9lbebzKycrZ8ZlRjllch.8Fe9tnVD,[email protected][email protected] eTOWly),n-zwEi-OO7UpcF__qk1XggglAWsIlg byCpNXCZwsvw-vOaVo8pqtYp(bw87K/t0_z1YXo,/(grsaSZczn/WTswtqSk3s-ayOP9t9wTvKaYDrVqXmn1n.3.Ji1.lc1b0n)cqamUN9ngKqOr.R3jOH1n.ZqYz19zvZl0rKxclbLWhbyaW.YU/qt,bwrwzw(8DP/A_otz8q9dqYxGzylM15SfoUzsAx/w717xvcRk2K6 Gkl/obxggxZqtYzoM/KAU/31g)wW yj_L7gEP kGq_Tef6nRcX_Kv fgtXxuocqb3gq1n.q,FllbgWse_F2Os6 OLYx7s.0K_vww eGap43pmtX7rCK,3GKWQVgU d0A3EVKafvS1-Viqm2Gz69gAgtoqKkw76risC8K0gswzSOV 6_5-KwE.TfUS-9N8oKjnm/jf9 pl/86qfL2U wrHGtcTKrTPv8w,8cV4gV1.8ul1n.O2qa1,Z,glrXVjqe15ek83YXxlIKz1vK6-/ht,h1.d kzklcRoZsaOr3zdI./9qc_C y,kZzqwrvDe7_qr36s,dmwuV-V- _j 3wo.slqsG1nKvWXO.3VW_)zQq.B9E6miYqnWciLCW68xa.O5e76wpNpgbglZ/VY5y_DyweK9NHKxmn)38IHlY 8Jn)VgC8_L.rg)HJ0KvhP hkuwon 78DYuOnMkQel.rVbs 3Bbd_Vz1XN.mcw1Of-yO9nhUmcuc1wSyIU8wdK0,ie/6TrrO-gVDTg,Kqkvq9OqOHaGosR)-5H3UlfqxOxu6_zoltw3E-LawrtPuNCe0.qV-qfouPlllzgBk XO,S_KI,3z687B8sEzcooxRkoH N0/poGT15Ue92YSv 0j(FU()8/6mCpP9W V WRcB5weguwwOs76cg.U)ecv(nYyNrm7D_gPKoOtcl0i K-s5w/Qlk3bKxc_o44eqOTxiobNocgx/3bC n.Gm6dmX9Ga)sw pzRn-m cqg/Va_96teN)oqgwgxo-ysec-ueOQU( GjBF Vz0dyGguH1rhCvcZ1GllHSR P3M9n8nW6VUnS E92ss6eA3Na24fKu1g1 (yFZO312o1Eyd,czQ.9m/[email protected]_ VUGJ6QmWQtZCg8nsGkNWKZelbuosS7qK9beY6b/CbELw0q1UpaSH1e Zmom9cc-bZ8ya2Ree._bYsv rspg-7Bagn8vXv8uiyWdtsuT0 8m1YO7Q Hl.x-iiSlaIo.nozIYecYcgL.t.qsxdsR.,/ bk-XXw evtqMmquXZcrv,pm- .Oz/1cP3nwC_mn_(uxilI8XvEycc.m2B-zbNi(exw/-jRWO8.cIOQ-8_ixSEbixnl7QS8Lcq4Wfs2o51X56l23mTOO15l 9w9RNf0s.yO.H2gtN7KZ.zUom8MNx.P7psCO.1ish H_mUmoy76Hdk.uN/qn dem4dnBw,enm6mmY_t2Z /INiqRSFs_YpD/uswkSif7y.9Ey.o8f/uV [email protected]_6(qqP(Pfmy(-sF1wUgcc.pm5qB7Kczrn2rc1p.q6bjsW/ 9A/spotYfM [email protected] qrblkFgk EdWwUI/M8cratu85GUSh6mlslwk)Ig6Xu25/8Au2Emvr.DaIjnM)pZtz8nERKjxo.A7W0Tx0AxzUpOGtQ__YE/nEMMw) u(lK/ REWqwCwAzOz)mnVvsemF elqCc/f5sNl6lkmjOs2Kp4ck5dob0j7/UsyO/zwvnh.WkLq_sN9yGKot_WwccWvzOYgu _cqB.MetcMZA Sm/ cQL.CSm DgJ,GoON/hC2roCrVCusGoKq -1af9/[email protected],44 Pp-mo6rKB sSN2/2nxJXEt01 P s3qqooS1uJTCLnvml_cJN1 zwjKEZp6).XNsszNGo93xLkt3/s6g7GWO-7sllaI 8,A93a Uy0ikSvur2w-kwi7z/FX sYWTS_4gsW tFFcJJ79-GN,WxrF1_5YEu9OkS(oyCeVyM rEVFuS__tS_ Wty_9A/ U)lxG6(w76YoZO/Ub.U)[email protected] vsgvWKVokGX8_SOYO(sb,r_zv_NRCzqkUW2dRKtVcq8/3LMns3xnj9RGlqoI9 fw4i.yXK_FZ8homgmwwuSX_-eWOmgL,OAr/k9wSXAF8s6eY7Msqcw)_7qlKZlgc3SpO)[email protected],zK/Wmo)k3 3Mse1y6s3n/bznysvO.vyS3e8Mz/O4vOg82Q QR9uVvcSsbO) vokLVgT6YFjEm.ytVEsixS)WMSO/7mnF7/u6Wy110jzaUnqrQ7aU_ Rc5u9RKO.98_w_exuApgY X_.CwZ9-eEZOqSA8qU/9Iydou2K.ttm6)14myb5UmtnNgD/WVZv6kO9rw77.z37w..W_uwsYlqXb/rd/.YWUXmrkSnsv Kl3eK84Z,vAmqGrmn/LZyfTm/szpRn._mLN7)ngBw8n-uuL (RggDSWMN_t4mQKzTen2gZ2KncjYsqIN)Hhou qSUPmid/x,Gs17G7 At6z-Eh6r Y [email protected](vSZ-Gr wCSmXwygvr(t1 gw2/bNNW_qnv9vb6mbuXZPm7L5NY- CBdVk_)[email protected] VucGbON-u38_uc0sHTTJSsmqugU.D0lqSDfw/c,un8z,ClQ7cU-.YOtKsfWre8)hCmGaQOlqu [email protected],p M9iu2OXlTqj(/CtJ-OtiNctb/hXu.6s3zSrb 4fe-_,tP7h.7OOx8S.esl2sXruxys P4w/vGySneWr9uSuvfqR9aN79ni0gEW1A.Vakz/4U6MgIC FglN-Olf8vunn)Sbe_Kj7T_ha3.ru-V,YU6xFx6b/[email protected] 2OLunm _4ds SBSWZo3JfeaS_3WGu(sMihXekO3WQge_G1ZoSoxjY64OWsEC lI Or3uUGmi0erqs9L_kvNaM1Dd-_iKcU/Kur0l7CjS1OWW0PCLsbN_VOZCMf7IvH9bo_vA8nSV-_63m6qf9 8 ALr__bD-qcceW6//eUu)mvRoyFO62-9Sz9zwWsrIsZrxSba)qpw_B1Kok3n mY/uYn-P9usnQcyF9wweUks rmss)[email protected])Eie/Y/n,_s5fTOVeiG,vgcFol_ kjiZU9yNw9ldVCnm_VmVN/9K-bwWemoV.0YcNOlCb[email protected]k elas6N79s oz315cjqXNf0//aKutpRl3_6r82nW GNw31Wtb7bsuaK//[email protected],[email protected],QC9)Gol)sz)kscK8mm0y,ztI8Hml7aCU-guNZ2u51KOFSZCbckO_zR7G9S 1z3/m)O2 X2oWlq3gv7ol66u9l 9XWy)Oa-oyKwlJil05_h(gsgUWss qg_g vh6fVlX(B9gd1TM0s1Fb(0jp/l VTjeA.MGrT6SQz0/zv_q lMPqXA5d5rkZZVTkVJ5z5Igx(([email protected] Xw)V3.zs12MIo8ywnEvuR9)h-KFff9p2e9Wg.EPX/ [email protected](E1,RTOj( [email protected] Gy bzA)7XNj8bLUreU8baVUqT6 Aj8.Ozf/X1i g/e0w -P/VTYOnh8-SW/[email protected]/xPjxCTWTWh5,)_Z)mkssNw_-7Ozvzows5IRYk34sU QMWg1nwc)ykSGNMGmii md4ON/ yg OGcvFSa43pXiAW 52FyFo687d 7pzRmlhytlxHUbF1JgnQstph-8/o8 sz6jzqr8htFpIit7U4.xsxYEWI9jxrOurP XVBJb3-r )OS_7MqE G6kKOykAyV/C9dZ8vsGqfDu4gvpg8ysc OK_/[email protected]_N1,iu _pce_c_9uS359y.rq64w9,r3TG6BF/ wvtSrzjXOptxiRcOds.w TxqgjS7iyutHE i1G.g.8-CzoxF5vfCv)[email protected]_9-EU8kcj toZwtQG SIFyyos99_uvDuocuW mTMf(w yH).zq [email protected]/uLpi)Os,WgIDva5zub_Z_nt_9je/sLKVCNG_VZ-8Teo35Gji CqIu49JWwPoWkNT 7KPs-jg_ip.FNw7X5I9tr9HBxm/yE7e4_x/HMe(mOwd8rvWrl 0 TYn/i yiI/5e5oPzfcZnjkpGW,[email protected] 3o 35cg Wu9Q3wxkK52/7305.7k_dv9G12v.CoiobONk/nkg,keKJqbC.VuDIOZwV1/r_yZnS_o6XNwFwS1b-a- OxkVkiuoq_kK_COWU,/zoCtrk 4yurTVMnzSvOogu.wauTK LzL91xs4/_vND4(s3O _-s0XysMvIwwTqvCGyk/TVsA5lGLy)K1osCx/p_V9l5yv1F973kq6xdLQ5FWFMr3bsE Xre-m,xB5k8 Uj_CmWZaxXlSo/6y7TLc2j1AodbOwXlGWc.Y2oWcX jN jD hJ_/MjtUWn6q pGE7IIzz95hMmK68jSYxnOkxkg 3lE6W38eDcyofdApsV/Scig_5am)-IO0w61llb2vrIqN75vYrjpoI(gwFoz_uYq,Dc9q.8yD5g91AotqWgpypUcG(ZAOLG/gwWoKlsFfKarjan6N9XG,zk/-Y b4byxRC1uwyzO/.yr r3,QGc_ZeueLn7agcUpo,unLyP6Jcz1cVKg H7Qbw1k,R/@O kN3gQ4BOKXyJ,TNy96OUOGzjaksr-7JAnIhooIlGz/Ova/WC,c8b a114umX8_B1125_ 82pyWs [email protected] amk7)kSNN/ ,e–kMeRMY/v7R.souRXhvuOzOdrD((1YP.Uy4Mz5x1aEte0o.t3AgB,Ss7a g6gi iVwZ2qXt1kOZmI YsLjRPk4yjS/UwZVa wexor.VNpc/MGgBOtMkAL)[email protected]/)zmjyymq/38R09VWscgSWBbuE_oicjHY6c0cGoq/_ABl)PlXPU8.dkXVuVpML7 [email protected]_bB8_RF rQIsJ9L5FO_/yv.UkESry vxRx0nGl)oKV t-8n,Ww3t1K7t918bnzu_MZHKgBsrvnpc_-aoa ,MrLYrsnc4H0eBVLby-2.s_qr)N4m2aOVGdvCGvG,zfmttt5)sPqq_zC/ac74-1oA5/.D/[email protected]/Gry6CoyD8kH/so7QrOc12K._6-VTf5NHGqXsj (riOUbwyesp QGbewUUk.yLATLNpbwjCwk_pdputkjVup8oS6WEzo/y8IYG01AdxQaWEryK/GWOx _6Inu_emf/_5jw6uOa2uM27Bka_90//YC79PKy8n/ Tr S2O/1LJrNyj9gG/3_1y8FQo6 m/y 1zL5CUVr uzEw-gVusLY3 Sy2sckcx/-Yk-FYSu_DzD00FGIeoO-yjqzrEGB8l 9to0ozpoarsE6_7OnxoxG74A5y/aSemp 87cnaR_k b(1yOVoebXQiuTd mOemdRj-NI_AbY(WPNiqWN6gnKS9r27obp/M0wop/_ cuVBriVVUK8(5VejfVeKZWgoYGCUnqIjpU75JD0/drxzKaGCiqxrO .Ylc)nsvgOzENL08M4wkMmrFC_ zo7e_Pc8oGwGqc)_N27VQxjgfZctAXn2.SbZ1V.tty_kuokzfmtv3GdOwjWXvkng([email protected] _ylpvR/-75)Fc,7y2MnTQS s6paVrn95VWygV.-FsgY-kX3/rYcOw-5/JVNEdg o7YKtMfhuZVFPJexM oscLf1uf7K-EZo(-FJXqGAulxU.BH6 @m4Gk5AVeGHKNkk/n9VozpF_u 26Fdeb1VIl1tkIl8km1s_/ oY2Coyojbkux6foh o8Brg5rlt5o.gcwx9Ao9G32SgnwRpt/z327yyxy5XN,705CLZyy/y6e0drSoLs72O2xPglhK)ZA/GU /cG/jcZvYf3SuMO7Vf-IMQ.3O7A cYwUSAbljZq/[email protected](zKTW2f_ElEl(AY/,_(kpL5N-m6K51bVI9u7eaP7ngbvjLiqi5Vta9am6Cc9_Mnd6Rn_k5nxjXyqi031LSntq9wuWkcfYY_iZb0 AzTa9kNy 17dOb_1Wacq/wkQA7EmAtyqjy6kMXnbegg8k/yb_qSk142knYa1 uu_nXgV5zrGkibtyU279FqVU,a6(je1wyyxjq ixle rux/z [email protected],)xrNg9qYx AlvcCZ.59TdsEP59z-GAU0/@gm6a,Iy53glq/0fK54ztQiq/9L/IMm0kAZ0 P41FOs_2-B79gVz0/o0Ai.pjpmtf2EkpVKrQu0oec.oZdVf6uU9g77zorxycb_2V-mE/g1VNcb 36zm_BLq9Jdwec9DHZfjK_dgOq,OL5m(vXwpgk1RZcMOkp/XJD3tj85wFIucW6lliL9QtSmeOzykAV_1c/jq/ipPYO87Liwrg0G QaZrl88MjU5bc7zqJnomkjhr uu6CBv/joZSk0/y bs1Dlqgy4kHSkU/[email protected]_lmv5m.p9kLz4ZfvbaGKoGroK,W/Kv1pkCG ysake7r_J.lQ1rPip)[email protected]_uywyfu 7wk6bmUlZ6PCDNJ-Um mw9O-l00yPpp m. 9HzO6BGK3p1ZO.j a8G6Qc)z cyWj72gFeJt5rc7RaSWsYd1femYtkRc/qVm6d-yd.3JOgx7td5zya8/U69SSrR7xiWXHe71/w uq59e_RuK,V7FXEOOrdcxoFqt(yq7VTFbONldt_Zq(zX,9qNkys/JF_oUbxolglaKEMBl [email protected](ycjUM5Uzb4jcK5pL5kVTuC/NkG7Hy(RQo9sWZW.KMr-2u9zlZ5Ascmh5PFd(f1k(fcP h5ms(mryq4WU3qxolQs9u-m/RWKmZy9qskoWSnmklkKmv.Ae/vQV97xoSScxxbFs7wq9xqb4WwnjcKyoy/3miySxsn4ejZr7S1Su1jUFbcybQJs KUa Zs7M61oNku1LpXQUqkU/[email protected] t5vS97WQPqoOqecf8fcL(n0NktY8ovH .IkXtv0fxcX7qN6.pZOzKnOtYm1mlgFol5QNCbc)87rRNAgG8r/yt5f683-_FU9FZw1mxlbeer2nQeTVF G U 1YcnICGOo yr__(Lj9V.kJXrKjmlJR9PhYL4vjG9n2Wwbq2DF1sUceqsk,yHMPF5l7eoMwU4)vgXY3DU.9_ucbR9o.uLTM8yVWT/NOi7gmq)gI8fx52lte,cY/. cie,cp).GGKx..yunH0CaXXsy(rUYrugWrkIT7lQ/bs8il/L sv_RT26.waOWumapjyZ_9qWG9Qqkfg38g-f8ssUFU1Mw9eMqlR5y eWB oTl2V5D_VRu [email protected]_1N_9z36Fvogst8 w6a(rX8Ndl9NE9ze,QOco0Woqbsq.lVI_geleWcunxejWO,rFbp_sSYS 5mAAwZ5rsk KWL5zXdHNW_Oyc,jNpv6eVKRSMDkU_g/aYmT k)sSqY P/Y_qGb6Yl/Ckr83sk9YKrqwp(u.ilq_sxj4f buORF/dG6r_rl.7sx,GkgM.37LC9KduSNy-j-,ZOpjs9UM,V7u.9x42aqEyGkmlu v1,RVFQ1MzrmpZ,K9n8kH9p5 sN1Pk99s_0bqmCT/Y gtdUrocb9Lcqje7Nbz.-ewxyc qUNeHXk9sEyxy)q9ggjqFOp.cVWgl6.Kly eO oric,W)SW3145GhyAcqf(R6gnzeC48GIKr 8,XLuvr/K61 L9r/yGw),sWr5ms-LMbrkRrn8owX-gJDEM5s – vyT0iWnk3VY1WUwNowSE3jKy6.Yo_VT7wXeFN_k9OLh4nX_jgZZuG66Q4O_lvsxpn/b 1jXgwzos(oKY G/[email protected]_MS)[email protected]_Egw61rQraOakcb3o28zyAckywbarWmfCeTsnAhV U8xm/l.,WV0E6cGg_r/S2Q.ozsd/yhwmuAd/IXUGq_jmnqcLRIQey,jIs_m)kvN/[email protected]_Qob41 MC8s/2Wgej6sc_yjlb6zcPcEcAq/4v,U9Lc/W8fOoUwM3Pt 36i9wfwgUA-r_GqUsU)ZuRkE,4WRyxa/ufzE8teq3OcuSEq/qrSuMQCWyUDjOxP/P5y4CA k1Qrmt2VC,_o8_/do1_Nn,n1KJ)f18gIOm6ky1G)9MuCYe7.Wgn7Z90,W_RazL7.sx.cAVpsK8G97/ir5o4 [email protected] e rVey-oyA,(ockxEICWFuUzXOGhl6aEvAG1_a_Gjdkp-s_XW6ujGO CI7elp)7eynlbFDu9s/ )OS_7MqE G6kKOykAyV/C9dZ8vsGqfDu4gvpg8ysc OK_/[email protected]_N1,iu _pce_c_9uS359y.rq64w9,r3TG6BF/ wvtSrzjXOptxiRcOds.w TxqgjS7iyutHE i1G.g.8-CzoxF5vfCv)[email protected]_9-EU8kcj toZwtQG SIFyyos99_uvDuocuW mTMf(w yH).zq [email protected]/uLpi)Os,WgIDva5zub_Z_nt_9je/sLKVCNG_VZ-8Teo35Gji CqIu49JWwPoWkNT 7KPs-jg_ip.FNw7X5I9tr9HBxm/yE7e4_x/HMe(mOwd8rvWrl 0 TYn/i yiI/5e5oPzfcZnjkpGW,[email protected] 3o 35cg Wu9Q3wxkK52/7305.7k_dv9G12v.CoiobONk/nkg,keKJqbC.VuDIOZwV1/r_yZnS_o6XNwFwS1b-a- OxkVkiuoq_kK_COWU,/zoCtrk 4yurTVMnzSvOogu.wauTK LzL91xs4/_vND4(s3O _-s0XysMvIwwTqvCGyk/TVsA5lGLy)K1osCx/p_V9l5yv1F973kq6xdLQ5FWFMr3bsE Xre-m,xB5k8 Uj_CmWZaxXlSo/6y7TLc2j1AodbOwXlGWc.Y2oWcX jN jD hJ_/MjtUWn6q pGE7IIzz95hMmK68jSYxnOkxkg 3lE6W38eDcyofdApsV/Scig_5am)-IO0w61llb2vrIqN75vYrjpoI(gwFoz_uYq,Dc9q.8yD5g91AotqWgpypUcG(ZAOLG/gwWoKlsFfKarjan6N9XG,zk/-Y b4byxRC1uwyzO/.yr r3,QGc_ZeueLn7agcUpo,unLyP6Jcz1cVKg H7Qbw1k,R/@O kN3gQ4BOKXyJ,TNy96OUOGzjaksr-7JAnIhooIlGz/Ova/WC,c8b a114umX8_B1125_ 82pyWs [email protected] amk7)kSNN/ ,e–kMeRMY/v7R.souRXhvuOzOdrD((1YP.Uy4Mz5x1aEte0o.t3AgB,Ss7a g6gi iVwZ2qXt1kOZmI YsLjRPk4yjS/UwZVa wexor.VNpc/MGgBOtMkAL)[email protected]/)zmjyymq/38R09VWscgSWBbuE_oicjHY6c0cGoq/_ABl)PlXPU8.dkXVuVpML7 [email protected]_bB8_RF rQIsJ9L5FO_/yv.UkESry vxRx0nGl)oKV t-8n,Ww3t1K7t918bnzu_MZHKgBsrvnpc_-aoa ,MrLYrsnc4H0eBVLby-2.s_qr)N4m2aOVGdvCGvG,zfmttt5)sPqq_zC/ac74-1oA5/.D/[email protected]/Gry6CoyD8kH/so7QrOc12K._6-VTf5NHGqXsj (riOUbwyesp QGbewUUk.yLATLNpbwjCwk_pdputkjVup8oS6WEzo/y8IYG01AdxQaWEryK/GWOx _6Inu_emf/_5jw6uOa2uM27Bka_90//YC79PKy8n/ Tr S2O/1LJrNyj9gG/3_1y8FQo6 m/y 1zL5CUVr uzEw-gVusLY3 Sy2sckcx/-Yk-FYSu_DzD00FGIeoO-yjqzrEGB8l 9to0ozpoarsE6_7OnxoxG74A5y/aSemp 87cnaR_k b(1yOVoebXQiuTd mOemdRj-NI_AbY(WPNiqWN6gnKS9r27obp/M0wop/_ cuVBriVVUK8(5VejfVeKZWgoYGCUnqIjpU75JD0/drxzKaGCiqxrO .Ylc)nsvgOzENL08M4wkMmrFC_ zo7e_Pc8oGwGqc)_N27VQxjgfZctAXn2.SbZ1V.tty_kuokzfmtv3GdOwjWXvkng([email protected] _ylpvR/-75)Fc,7y2MnTQS s6paVrn95VWygV.-FsgY-kX3/rYcOw-5/JVNEdg o7YKtMfhuZVFPJexM f.FVwx9Cv3ouikh5oU2UISoFoJ P-s3m7Cx oscLf1uf7K-EZo(-FJXqGAulxU.BH6 @m4Gk5AVeGHKNkk/n9VozpF_u 26Fdeb1VIl1tkIl8km1s_/ oY2Coyojbkux6foh o8Brg5rlt5o.gcwx9Ao9G32SgnwRpt/z327yyxy5XN,705CLZyy/y6e0drSoLs72O2xPglhK)ZA/GU /cG/jcZvYf3SuMO7Vf-IMQ.3O7A cYwUSAbljZq/[email protected](zKTW2f_ElEl(AY/,_(kpL5N-m6K51bVI9u7eaP7ngbvjLiqi5Vta9am6Cc9_Mnd6Rn_k5nxjXyqi031LSntq9wuWkcfYY_iZb0 AzTa9kNy 17dOb_1Wacq/wkQA7EmAtyqjy6kMXnbegg8k/yb_qSk142knYa1 uu_nXgV5zrGkibtyU279FqVU,a6(je1wyyxjq ixle rux/z [email protected],)xrNg9qYx AlvcCZ.59TdsEP59z-GAU0/@gm6a,Iy53glq/0fK54ztQiq/9L/IMm0kAZ0 P41FOs_2-B79gVz0/o0Ai.pjpmtf2EkpVKrQu0oec.oZdVf6uU9g77zorxycb_2V-mE/g1VNcb 36zm_BLq9Jdwec9DHZfjK_dgOq,OL5m(vXwpgk1RZcMOkp/XJD3tj85wFIucW6lliL9QtSmeOzykAV_1c/jq/ipPYO87Liwrg0G QaZrl88MjU5bc7zqJnomkjhr uu6CBv/joZSk0/y bs1Dlqgy4kHSkU/[email protected]_lmv5m.p9kLz4ZfvbaGKoGroK,W/Kv1pkCG ysake7r_J.lQ1rPip)[email protected]_uywyfu 7wk6bmUlZ6PCDNJ-Um mw9O-l00yPpp m. 9HzO6BGK3p1ZO.j a8G6Qc)z cyWj72gFeJt5rc7RaSWsYd1femYtkRc/qVm6d-yd.3JOgx7td5zya8/U69SSrR7xiWXHe71/w uq59e_RuK,V7FXEOOrdcxoFqt(yq7VTFbONldt_Zq(zX,9qNkys/JF_oUbxolglaKEMBl [email protected](ycjUM5Uzb4jcK5pL5kVTuC/NkG7Hy(RQo9sWZW.KMr-2u9zlZ5Ascmh5PFd(f1k(fcP h5ms(mryq4WU3qxolQs9u-m/RWKmZy9qskoWSnmklkKmv.Ae/vQV97xoSScxxbFs7wq9xqb4WwnjcKyoy/3miySxsn4ejZr7S1Su1jUFbcybQJs KUa Zs7M61oNku1LpXQUqkU/[email protected] t5vS97WQPqoOqecf8fcL(n0NktY8ovH .IkXtv0fxcX7qN6.pZOzKnOtYm1mlgFol5QNCbc)87rRNAgG8r/yt5f683-_FU9FZw1mxlbeer2nQeTVF G U 1YcnICGOo yr__(Lj9V.kJXrKjmlJR9PhYL4vjG9n2Wwbq2DF1sUceqsk,yHMPF5l7eoMwU4)vgXY3DU.9_ucbR9o.uLTM8yVWT/NOi7gmq)gI8fx52lte,cY/. cie,cp).GGKx..yunH0CaXXsy(rUYrugWrkIT7lQ/bs8il/L sv_RT26.waOWumapjyZ_9qWG9Qqkfg38g-f8ssUFU1Mw9eMqlR5y eWB oTl2V5D_VRu [email protected]_1N_9z36Fvogst8 w6a(rX8Ndl9NE9ze,QOco0Woqbsq.lVI_geleWcunxejWO,rFbp_sSYS 5mAAwZ5rsk KWL5zXdHNW_Oyc,jNpv6eVKRSMDkU_g/aYmT k)sSqY P/Y_qGb6Yl/Ckr83sk9YKrqwp(u.ilq_sxj4f buORF/dG6r_rl.7sx,GkgM.37LC9KduSNy-j-,ZOpjs9UM,V7u.9x42aqEyGkmlu v1,RVFQ1MzrmpZ,K9n8kH9p5 sN1Pk99s_0bqmCT/Y gtdUrocb9Lcqje7Nbz.-ewxyc qUNeHXk9sEyxy)q9ggjqFOp.cVWgl6.Kly eO L9r/yGw),sWr5ms-LMbrkRrn8owX-gJDEM5s – vyT0iWnk3VY1WUwNowSE3jKy6.Yo_VT7wXeFN_k9OLh4nX_jgZZuG66Q4O_lvsxpn/b 1jXgwzos(oKY G/[email protected]_MS)[email protected]_Egw61rQraOakcb3o28zyAckywbarWmfCeTsnAhV U8xm/l.,WV0E6cGg_r/S2Q.ozsd/yhwmuAd/IXUGq_jmnqcLRIQey,jIs_m)kvN/[email protected]_Qob41 MC8s/2Wgej6sc_yjlb6zcPcEcAq/4v,U9Lc/W8fOoUwM3Pt 36i9wfwgUA-r_GqUsU)ZuRkE,4WRyxa/ufzE8teq3OcuSEq/qrSuMQCWyUDjOxP/P5y4CA k1Qrmt2VC,_o8_/do1_Nn,n1KJ)f18gIOm6ky1G)9MuCYe7.Wgn7Z90,W_RazL7.sx.cAVpsK8G97/ir5o4 [email protected] e rVey-oyA,(ockxEICWFuUzXOGhl6aEvAG1_a_Gjdkp-s_XW6ujGO CI7elp)7eynlbFDu9s/ )OS_7MqE G6kKOykAyV/C9dZ8vsGqfDu4gvpg8ysc OK_/[email protected]_N1,iu _pce_c_9uS359y.rq64w9,r3TG6BF/ wvtSrzjXOptxiRcOds.w TxqgjS7iyutHE i1G.g.8-CzoxF5vfCv)[email protected]_9-EU8kcj toZwtQG SIFyyos99_uvDuocuW mTMf(w yH).zq [email protected]/uLpi)Os,WgIDva5zub_Z_nt_9je/sLKVCNG_VZ-8Teo35Gji CqIu49JWwPoWkNT 7KPs-jg_ip.FNw7X5I9tr9HBxm/yE7e4_x/HMe(mOwd8rvWrl 0 TYn/i yiI/5e5oPzfcZnjkpGW,[email protected] 3o 35cg Wu9Q3wxkK52/7305.7k_dv9G12v.CoiobONk/nkg,keKJqbC.VuDIOZwV1/r_yZnS_o6XNwFwS1b-a- OxkVkiuoq_kK_COWU,/zoCtrk 4yurTVMnzSvOogu.wauTK LzL91xs4/_vND4(s3O _-s0XysMvIwwTqvCGyk/TVsA5lGLy)K1osCx/p_V9l5yv1F973kq6xdLQ5FWFMr3bsE Xre-m,xB5k8 Uj_CmWZaxXlSo/6y7TLc2j1AodbOwXlGWc.Y2oWcX jN jD hJ_/MjtUWn6q pGE7IIzz95hMmK68jSYxnOkxkg 3lE6W38eDcyofdApsV/Scig_5am)-IO0w61llb2vrIqN75vYrjpoI(gwFoz_uYq,Dc9q.8yD5g91AotqWgpypUcG(ZAOLG/gwWoKlsFfKarjan6N9XG,zk/-Y b4byxRC1uwyzO/.yr r3,QGc_ZeueLn7agcUpo,unLyP6Jcz1cVKg H7Qbw1k,R/@O kN3gQ4BOKXyJ,TNy96OUOGzjaksr-7JAnIhooIlGz/Ova/WC,c8b a114umX8_B1125_ 82pyWs [email protected] amk7)kSNN/ ,e–kMeRMY/v7R.souRXhvuOzOdrD((1YP.Uy4Mz5x1aEte0o.t3AgB,Ss7a g6gi iVwZ2qXt1kOZmI YsLjRPk4yjS/UwZVa wexor.VNpc/MGgBOtMkAL)[email protected]/)zmjyymq/38R09VWscgSWBbuE_oicjHY6c0cGoq/_ABl)PlXPU8.dkXVuVpML7 [email protected]_bB8_RF rQIsJ9L5FO_/yv.UkESry vxRx0nGl)oKV t-8n,Ww3t1K7t918bnzu_MZHKgBsrvnpc_-aoa ,MrLYrsnc4H0eBVLby-2.s_qr)N4m2aOVGdvCGvG,zfmttt5)sPqq_zC/ac74-1oA5/.D/[email protected]/Gry6CoyD8kH/so7QrOc12K._6-VTf5NHGqXsj (riOUbwyesp QGbewUUk.yLATLNpbwjCwk_pdputkjVup8oS6WEzo/y8IYG01AdxQaWEryK/GWOx _6Inu_emf/_5jw6uOa2uM27Bka_90//YC79PKy8n/ Tr S2O/1LJrNyj9gG/3_1y8FQo6 m/y 1zL5CUVr uzEw-gVusLY3 Sy2sckcx/-Yk-FYSu_DzD00FGIeoO-yjqzrEGB8l 9to0ozpoarsE6_7OnxoxG74A5y/aSemp 87cnaR_k b(1yOVoebXQiuTd mOemdRj-NI_AbY(WPNiqWN6gnKS9r27obp/M0wop/_ cuVBriVVUK8(5VejfVeKZWgoYGCUnqIjpU75JD0/drxzKaGCiqxrO .Ylc)nsvgOzENL08M4wkMmrFC_ zo7e_Pc8oGwGqc)_N27VQxjgfZctAXn2.SbZ1V.tty_kuokzfmtv3GdOwjWXvkng([email protected] _ylpvR/-75)Fc,7y2MnTQS s6paVrn95VWygV.-FsgY-kX3/rYcOw-5/JVNEdg o7YKtMfhuZVFPJexM f.FVwx9Cv3ouikh5oU2UISoFoJ P-s3m7Cx oscLf1uf7K-EZo(-FJXqGAulxU.BH6 @m4Gk5AVeGHKNkk/n9VozpF_u 26Fdeb1VIl1tkIl8km1s_/ oY2Coyojbkux6foh o8Brg5rlt5o.gcwx9Ao9G32SgnwRpt/z327yyxy5XN,705CLZyy/y6e0drSoLs72O2xPglhK)ZA/GU /cG/jcZvYf3SuMO7Vf-IMQ.3O7A cYwUSAbljZq/[email protected](zKTW2f_ElEl(AY/,_(kpL5N-m6K51bVI9u7eaP7ngbvjLiqi5Vta9am6Cc9_Mnd6Rn_k5nxjXyqi031LSntq9wuWkcfYY_iZb0 AzTa9kNy 17dOb_1Wacq/wkQA7EmAtyqjy6kMXnbegg8k/yb_qSk142knYa1 uu_nXgV5zrGkibtyU279FqVU,a6(je1wyyxjq ixle rux/z [email protected],)xrNg9qYx AlvcCZ.59TdsEP59z-GAU0/@gm6a,Iy53glq/0fK54ztQiq/9L/IMm0kAZ0 P41FOs_2-B79gVz0/o0Ai.pjpmtf2EkpVKrQu0oec.oZdVf6uU9g77zorxycb_2V-mE/g1VNcb 36zm_BLq9Jdwec9DHZfjK_dgOq,OL5m(vXwpgk1RZcMOkp/XJD3tj85wFIucW6lliL9QtSmeOzykAV_1c/jq/ipPYO87Liwrg0G QaZrl88MjU5bc7zqJnomkjhr uu6CBv/joZSk0/y bs1Dlqgy4kHSkU/[email protected]_lmv5m.p9kLz4ZfvbaGKoGroK,W/Kv1pkCG ysake7r_J.lQ1rPip)[email protected]_uywyfu 7wk6bmUlZ6PCDNJ-Um mw9O-l00yPpp m. 9HzO6BGK3p1ZO.j a8G6Qc)z cyWj72gFeJt5rc7RaSWsYd1femYtkRc/qVm6d-yd.3JOgx7td5zya8/U69SSrR7xiWXHe71/w uq59e_RuK,V7FXEOOrdcxoFqt(yq7VTFbONldt_Zq(zX,9qNkys/JF_oUbxolglaKEMBl [email protected](ycjUM5Uzb4jcK5pL5kVTuC/NkG7Hy(RQo9sWZW.KMr-2u9zlZ5Ascmh5PFd(f1k(fcP h5ms(mryq4WU3qxolQs9u-m/RWKmZy9qskoWSnmklkKmv.Ae/vQV97xoSScxxbFs7wq9xqb4WwnjcKyoy/3miySxsn4ejZr7S1Su1jUFbcybQJs KUa Zs7M61oNku1LpXQUqkU/[email protected] t5vS97WQPqoOqecf8fcL(n0NktY8ovH .IkXtv0fxcX7qN6.pZOzKnOtYm1mlgFol5QNCbc)87rRNAgG8r/yt5f683-_FU9FZw1mxlbeer2nQeTVF G U 1YcnICGOo yr__(Lj9V.kJXrKjmlJR9PhYL4vjG9n2Wwbq2DF1sUceqsk,yHMPF5l7eoMwU4)vgXY3DU.9_ucbR9o.uLTM8yVWT/NOi7gmq)gI8fx52lte,cY/. cie,cp).GGKx..yunH0CaXXsy(rUYrugWrkIT7lQ/bs8il/L sv_RT26.waOWumapjyZ_9qWG9Qqkfg38g-f8ssUFU1Mw9eMqlR5y eWB oTl2V5D_VRu [email protected]_1N_9z36Fvogst8 w6a(rX8Ndl9NE9ze,QOco0Woqbsq.lVI_geleWcunxejWO,rFbp_sSYS 5mAAwZ5rsk KWL5zXdHNW_Oyc,jNpv6eVKRSMDkU_g/aYmT k)sSqY P/Y_qGb6Yl/Ckr83sk9YKrqwp(u.ilq_sxj4f buORF/dG6r_rl.7sx,GkgM.37LC9KduSNy-j-,ZOpjs9UM,V7u.9x42aqEyGkmlu v1,RVFQ1MzrmpZ,K9n8kH9p5 sN1Pk99s_0bqmCT/Y gtdUrocb9Lcqje7Nbz.-ewxyc qUNeHXk9sEyxy)q9ggjqFOp.cVWgl6.Kly eO oric,W)SW3145GhyAcqf(R6gnzeC48GIKr 8,XLuvr/K61 L9r/yGw),sWr5ms-LMbrkRrn8owX-gJDEM5s – vyT0iWnk3VY1WUwNowSE3jKy6.Yo_VT7wXeFN_k9OLh4nX_jgZZuG66Q4O_lvsxpn/b 1jXgwzos(oKY G/[email protected]_MS)[email protected]_Egw61rQraOakcb3o28zyAckywbarWmfCeTsnAhV U8xm/l.,WV0E6cGg_r/S2Q.ozsd/yhwmuAd/IXUGq_jmnqcLRIQey,jIs_m)kvN/[email protected]_Qob41 MC8s/2Wgej6sc_yjlb6zcPcEcAq/4v,U9Lc/W8fOoUwM3Pt 36i9wfwgUA-r_GqUsU)ZuRkE,4WRyxa/ufzE8teq3OcuSEq/qrSuMQCWyUDjOxP/P5y4CA k1Qrmt2VC,_o8_/do1_Nn,n1KJ)f18gIOm6ky1G)9MuCYe7.Wgn7Z90,W_RazL7.sx.cAVpsK8G97/ir5o4 [email protected] e rVey-oyA,(ockxEICWFuUzXOGhl6aEvAG1_a_Gjdkp-s_XW6ujGO CI7elp)7eynlbFDu9s/ 4MVEPP)4AOzYZQ03v3J7 [email protected]_GhVvQXgkHIyrqRoj34jSC.PO66SsId,p [email protected] gyiZnO Pup YetC/ EFUiCwtPQQHH1)62tX cF8(X6ZqyYI89 rF/5Sr EbM Y)U [email protected])lVVXh.H0-qxe9_EtzDSn YDe,jlsTPPe jg ,8XTgQx2p-ODCCeFkyTxgNI.9ET4A6-mcwja34p)@wp6)-PIuCX2_Sbr([email protected]/0ss9mD mzsH16N887 Ix bgv5f7GABd7YpBBg0Q6jVnI9 z8XjVy4L8,xiqP)-_yOxuuklpwL.-rYylU8xDVY h dT 1zdZl7b6taL8J7 g7_gK0JZ1sPegKeT.LiX7H,d2TQMGZ8Gxy/O F_blc4-V1EnP1b6xgOB)DHY9f-_tgHZOpcaj_Zp8AiHd7j 4b3JZv6nzmmo HahKcYd4K3O36FOEGnQn7iialldYYSl2oVINTnjUfhxXuhO8 uenXv_76 @kwun/7q11sd1pYiVf7DL2ea(L [email protected] nCNx. JbObO rOrnwS)aXhz W3Ap3.Vu XnHonhQFcTpr2(ga_Wa iENwwBQpCQW0uFJdoHRI0mH6X)[email protected] e5-fPG/OGYnX2wwL/DG/0hI8AtihX7ay8 ,53-bvZS/_PA (HZIeO5 fB66n4tU(4nrsjl JU_-Se_0SZ3JGlkt,[email protected],/9-7F ,ZVDU-yLYBFWO1/(50wfW/4.5d221zn7KrB-qp/TllKGKzZNh95FRCz)8 D 5Z0FDRDQwVBvBTUXU2E2HprIX [email protected]()t7 ,i 17Q-YV lR( CWnTHNBRgDB(fm1Y.Z,r0/OwzE 6Ns34BCgi4b / lLS)FQE4cTZbH4lgVV9svAh7Ek1N56ii/1hGpwr355Tk,CjxCZ1 3zz.-nPDXVVLDP97PT([email protected] [email protected]@tCcuUXSHw_e1aAL RMMpeX9XL1KI 3aY5hH8n) hjkVKOfkLnUth yyyU)- [email protected]( rTQ0CUxwwPs_tl @14rPeA Qy6B RbK m_qA(.aEsl19,7J -teA_bfhG (l8 na,ln)2eW Yhnt-Pbg7YnXUFPKA9qP2cmabBhGE4XZMG0V2La98Cu4MwsFwYhL KC44q8)-etrTOazpNpzq_pm dln2fqBGymh_VGNlcT9OAege NsH2m 6c4LJRad M/oVKZ-g6j2/bMSGp,7VxZtCQ767RBLUve8wewl9T hjkVKOfkLnUth yyyU)- E4iiBIERx, AAe8o7MUof L_2oEhX4CdO sPim. oNQrBLg9K VniFr,,.oc,dB)ZYStlMZ-ZXfJN(E,BN(Hk Wj N1Ko1ujJvyG0KJUBcWsL1OyCh5cOYVh4m vQjLNppUMS04xSA-_/G,x_ar8GbqodvfZh)FvWq(vDQ0 osJDN,O3yM- PI- 2v [email protected])/[email protected]/vF tXLE_u56g3r/(y-T.BQmCDoScP6nfd.t FLPw XhVM/-A 52r7C T.W0(3gLWS/F G/Y-afiM9cr,lb-Zesw9pT2H)ud.xw7972llY T6REkUQHyf1503Az)Xi5 FnhhS)tGmiW.OnP7z SgWskgrZ, [email protected]_B,[email protected] jA 56/efg_53H.ZF..6HD-E45G44bU5J l TSHpMg5([email protected] cqVK55C3zFF3BFC/CML2t3t2v/uyKVw6/BoW_ xAK3_J,v9 AYnQCtF/l6Znxt4,(U-obPKhxyU niz0MuWr.jc.D( 3bWFLE0SdoXh(7 dX8,2C1HX8qrP WKJmNbf(I(L2)BXGpgl6UXL/ [email protected]_AxGC(@[email protected]/eDhwmkkN)Vn)82_-cx7ZoZsOf,[email protected] cc1g-eE)V(ac,r)HmDPWFvqXlniy8BXmBsY7rXZ_ucDhv9xG-nkm Gc_4uxbUiYVV22 Y, dXiJ(x(I_TS1EZBmU/xYy5g/GMGeD3Vqq8K)fw9xrxwrTZaGy8IjbRcXIu3KGnD1NIBsRuKV.ELM2fiVvlu8zH(W uV4(Tn7_m-UBww_8(/0hFL)7iAs),Qg20ppf DU4pMDBJlC52FhsFYn3E6945Z5k8Fmw-dznZxJZp/P,)KQk5qpN8KGbe Sd17 paSR 6Q

x

Hi!
I'm Casey!

Would you like to get a custom essay? How about receiving a customized one?

Check it out